Какие материалы применяются в технике? Искусственные органы: прошлое, настоящее и будущее

Какие материалы применяются в технике? Искусственные органы: прошлое, настоящее и будущее

Какие материалы применяются в технике?

Ответ на такой вопрос, кажется, всем известен: металл, дерево, пластмассы... Да, действительно, эти материалы широко используются в технике. Однако они далеко не исчерпывают всего богатейшего их набора, применяемого для этих целей.
Природа подарила человеку множество материалов для его трудовой деятельности. Железо, дерево, камень, глина, такие природные полимеры, как лен, хлопок, шерсть, кожа... Они широко используются и сейчас. Но многие из них - в совершенно ином качестве. Новейшие сплавы на основе железа, например, выдерживают невиданные ранее температуры и давления, весьма устойчивы к кислотам и щелочам (агрессивным средам), очень прочны. Недаром они остаются основой машиностроения. Но для железа это еще далеко не предел. Ученые уже нащупывают пути, чтобы сделать его еще прочнее, причем в десятки и сотни раз.
Не обойтись теперь в технике и без других металлов и сплавов. Так, без сплавов на основе алюминия и титана не могли бы летать в небе самолеты и подниматься в космос ракеты. А редкоземельные элементы! Без них не сваришь высококачественной стали, не создашь полупроводникового прибора, электронной лампы и т. д.
Сплавление материалов, которые дала нам природа, лишь один из путей их использования. Есть и другой путь - соединение механическое. Вспомним всем известный железобетон. В нем соединены совершенно разнородные вещества - бетон и сталь. И тем не менее этот "союз" оказался настолько прочным, что из железобетона создают самые долгоживущие сооружения - мосты, плотины, здания. Из него теперь делают даже плавучие причалы, корпуса судов, станины станков.
А вот другой подобный материал - металлокерамика. Здесь сочетание свойств металла и очень твердой жароустойчивой керамики дало прямо-таки удивительные результаты. Достаточно сказать, что некоторые виды металлокерамики выдерживают температуру в несколько тысяч градусов, - когда любая сталь превращается в жидкость.
Ну и, конечно, всем знакомы автомобильные шины, в которых сочетаются каучук с капроном. Они очень прочны, выдерживают сотни тысяч километров дорог.
И еще один путь улучшения традиционных материалов - их обработка при помощи различных физико-химических способов. Мы уже говорили: ученые нащупывают пути, чтобы сделать железо прочнее. Дело в том, что они обнаружили особенности в строении его кристаллической решетки, влияющие на прочность металла. Если эти "нарушения" (дислокации, как их назвали) подправить - сделать кристаллическую структуру более правильной, прочность железа возрастет в сотни раз. Уже выращены в лаборатории кристаллы ("усы") железа, в которых дислокаций почти нет. Это пока только начало большого, очень трудного пути по улучшению многих материалов.
А вот если вещество очистить от всех посторонних примесей - сделать его сверхчистым, оно приобретает новые свойства. Сверхчистые германий и кремний, например, становятся полупроводниками. Причем в зависимости от количества примесей (а они в этих случаях измеряются буквально считанными атомами) их свойства резко меняются. Так, удалось, вводя в кристалл полупроводника нужные атомы, сделать из него сложный электронный прибор со своими диодами, триодами, сопротивлениями. И все это в одном маленьком кристалле!
Сверхвысокие и сверхнизкие давления и температуры тоже резко меняют свойства материалов. Обычное стекло при подобной обработке превращается в ситалл - материал, способный состязаться со сталью по прочности, не боящийся ни ударов, ни больших нагрузок. А из песка после соответствующей его обработки получают силикальцит - строительный материал, не уступающий по своим качествам бетону.
Способов переработки и использования старых, традиционных материалов открыто немало. Но все же на современном уровне развития техники этого оказалось недостаточно. Для специальных целей понадобились совсем новые материалы, с невиданными в природе (свойствами. И они созданы искусственно, их дала химия.
Мы уже говорили (см. ст. "Техника идет вперед") о ее роли в создании синтетических материалов. Их в наши дни появилось множество новых, с заранее заданными свойствами: прочных, эластичных, стойких к кислотам, способных выдерживать высокие и низкие температуры, не боящихся влаги и огня, легко обрабатываемых, дешевых...
Во время прошлой войны говорили: "Нейлон создал тяжелые бомбардировщики". И действительно, не будь изобретены шины с синтетической основой (кордом), нить которой подчас надежнее стальной проволоки, не смогли бы взлетать и садиться на бетонированные дорожки аэродромов огромные самолеты, мчаться по асфальту большие грузовые автомобили.
И это только один пример того, что дает синтетика для развития техники. Таких примеров бесчисленное множество - синтетические технические ткани, детали машин, полупроводники, приводные ремни, канаты, сети, фильтры... всего и не перечислить. А ведь синтетика только-только начинается, ей по существу всего каких-нибудь три десятка лет.
Как видим, арсенал материалов современной техники поистине неисчерпаем. Столь же разнообразны и методы их получения. И все это ведет к одному - к необычайно быстрому развитию техники.

Мы сосредоточились на трех элементах. Первая - концентрация отрицательных ионов. Медицина знает, что отрицательные ионы хороши для нашего организма. Они очищают атмосферу от пыли, повышают уровень кислорода в нашей крови и убивают вирусы и бактерии. Очевидно, кто-то построил подземное лечебное средство.

Следующий элемент, который мы измеряем, - это наличие космического излучения. На поверхности Земли мы подвергаемся большому излучению со стороны Вселенной. Некоторые из радиации оказывают негативное воздействие на наше тело. В туннелях ниже боснийских пирамид мы не обнаружили вредного космического излучения.

Е.В. Дубровский
В.А. Мезенцев

Размещение фотографий и цитирование статей с нашего сайта на других ресурсах разрешается при условии указания ссылки на первоисточник и фотографии.

Евсеева Екатерина Андреевна

Глава 1. История создания искусственных органов и развитие современной биологической науки в данном направлении

Третий элемент - естественная радиоактивность. На Земле много мест, в боснийских пирамидах нет туннелей. Как только вы входите в эти туннели, ваши клетки тела просто не имеют врагов и могут сосредоточиться на выполнении своей работы. И именно начать процесс восстановления, самовосстановления. Кроме того, пирамидальная энергия улучшает молекулярную структуру воды и пищи, может использоваться в целях коммуникации, может разблокировать наши возможности мозга и может даже влиять на общество, чтобы уменьшить насилие.

Очевидно, что пирамидальная энергия может стать ключом к более счастливому будущему для человечества. Пирамида Солнца ориентирована на север, 12-секундное отклонение. Это восприятие гораздо точнее, чем у пирамиды Гизы. Можете ли вы объяснить, что это значит - что он говорит нам, людям в современном мире? Великая египетская пирамида имеет отклонение от космического севера от 0 градусов и 2 минуты.

Глава 2. Современные искусственные органы, материалы для их создания

Глава 3. Отношение общественности к искусственным органам

Глава 4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Скачать:

Подписи к слайдам:

Муниципальное общеобразовательное учреждение -Средняя общеобразовательная школа № 3 г. Аткарска
Автор: Евсеева Екатерина учащаяся 11 класса
средней общеобразовательной школы № 3 г. Аткарска
Научный руководитель: Кузнецова Наталья Владимировна учитель биологии и химии общеобразовательной школы № 3 г. Аткарска
Аткарск 2012
или
Лечить
заменить орган? Выяснить, кода появились первые попытки воссоздания человеческих органов. Рассказать о современных искусственных органах.Показать «плюсы» и «минусы» искусственных органов. Раскрыть принцип практического применения искусственных органов. Провести социологические опросы и выявить отношение современных людей к внедрению в организм искусственных органов. Выявить тенденции развития биологической науки в направлении создании искусственных органов в России.
Разработка приборов, способных брать на себя функции органов человеческого тела - одно из передовых направлений современной медицины.
История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» - заменители естественных органов - люди стремились уже с давних времен.
Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце
Рисунок 2.Брюхоненко Сергей Сергеевич
1925 год принято считать началом отсчета в истории разработок искусственных органов.
В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор – аппарат заменяющий функцию легких.
В начале 1937 г. В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке.
В 1943 году нидерландский ученый В. Кольф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку.
В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие.
В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека имплантируемое искусственное сердце.
В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней.
В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца.
Современная биологическая индустрия достигла своего пика. Появляются все новые и новые аппараты и приборы, на разработки которых уходит не десятки лет, а месяцы. Если раньше создание киборгов, было только сказкой, то современные изобретения позволяют в этом усомниться.
Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус - часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве.
Немецким ученым из Института биохимии имени Макса Планка после длительных исследований удалось совместить живые клетки головного мозга с полупроводниковым чипом.
А калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций»
Группа специалистов консорциума Bionic Vision Australia презентовали свой бионический глаз в Университете Мельбурна
А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации.
Первая группа – лица от 16 до 25 лет. Вторая группа – от 26 до 45 лет. Количество участников в каждой группе 30 человек. Опрос состоял из следующих вопросов: Как вы относитесь к искусственным органам? Считаете ли вы, что искусственные органы способны продлить жизнь человеку? Как бы вы ответили на вопрос: «Лечить или заменить орган»?
Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам.
Все эти годы работы по созданию и клиническому применению искусственных органов в ведущих странах и, в особенности, в России не только не прекращались, но обеспечивались приоритетным финансированием. Сегодня это направление объединяет последние мировые медико-биологические и технические разработки и технологии, в том числе, с привлечением к их созданию новейших достижений военно-промышленного комплекса. Стимулом являются невероятные рыночные прибыли и неограниченная востребованность разработок на медицинском рынке. К основным медицинским направлениям, для которых осуществляются разработки, являются сердечно - сосудистые заболевания, сахарный диабет, онкология, травматология.
заменить орган?
или
Лечить
Я считаю, что в будущем человечество либо усовершенствует ныне существующие органы, либо найдет альтернативный путь решения этой проблемы. И кто знает, может, к концу 21 века люди будут иметь неограниченные возможности, и киборги станут не сказкой, а самой настоящей реальностью. Задачи, поставленные мной в начале проекта, достигнуты. Открыто новое научное знание. Получены практические, полезные результаты. Данный проект может быть применен при проведении уроков, семинаров, в качестве учебного пособия.
Вывод:
Список используемой литературы: Брюхоненко С.С., Чечулин С.И. (1926), Опыты по изолированию головы собаки (с демонстрацией прибора) // Труды II Всесоюзного съезда физиологов. - Л.: Главнаука.Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. - М.: МедгизГришманов В.Ю., Лебединский К.М. (2000). Искусственное питание: концепции и возможности // Мир Медицины (3-4). Шутов ЕВ (2010). Перитонеальный диализ – М.http://ru.wikipedia.org/wikihttp://medi.ru/doc/http://itc.ua/articles/iskusstvennye_organy_na_puti_k_kiborgamhttp://novostinauki.ru/news/19118/

Государственный институт геодезии в Сараево измерил ориентацию боснийской пирамиды Солнца, сделав вывод о том, что он имеет самую точную ориентацию планеты - 0 градусов 0 градусов, 0 минут. До нашей работы в Боснии ни один археолог, египтолог или исследователь пирамиды не знал о важности ориентации пирамид. Это потому, что они никогда не использовали знания физики на пирамидах. Эти ученые наблюдали пирамиды как структуры, а не как энергетические машины.

Мы знаем, что наша планета - огромный энергетический шар. И в этом шаре постоянно происходит движение энергий. Наши тела также являются энергетическими шарами, есть также движение энергий. С точки зрения Земли самая сильная ось - это север-юг и второй восток-запад. Итак, когда вы делаете четырехстороннюю пирамиду и прекрасно перемещаетесь, движение нашей планетарной энергии инициирует движение внутри пирамиды.

Предварительный просмотр:

Введение

Глава 1. История создания искусственных органов и развитие современной биологической науки в данном направлении

Глава 2. Современные искусственные органы, материалы для их создания

Глава 3. Отношение общественности к искусственным органам

Глава 4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Существует три потока энергии, которые можно измерить. Первый - тот, который проходит через верх. Мы измерили этот поток в боснийской пирамиде Солнца. Второй - поток внутри пирамиды, образующий круг. Если вы подвергаетесь воздействию этого потока, это улучшает молекулярную структуру вашего тела. Третий поток состоит из концентрических кругов, которые движутся близко к основанию пирамиды. Это влияет на сельское хозяйство и общество в целом.

Стало ясно, что мегалиты, находящиеся в туннельном лабиринте, излучают энергию. Изучали ли вы эту энергию и что еще можете рассказать нам об этом явлении? В туннелях мы обнаружили блоки разных размеров. Мы проанализировали их и оказались искусственными керамическими блоками. И под этими блоками есть потоки подземных вод. Мы знаем, что когда вода движется, она выделяет энергию. Эта энергия ударяет по кристаллу кварца и активирует его.

Заключение

Приложения

Введение

В 20 веке научная индустрия приобрела новые приоритеты. Современный мир требует решения множества проблем: лечения смертельных болезней, возобновлению клеток человеческого тела, расшифрования генетического кода. Однако есть еще одна проблема - способность к «изнашиванию» человеческих органов. Искусственные органы – альтернативный путь решения данного вопроса. Сейчас вопрос: «Лечить или заменить орган?» - стоит ребром в биологической науке. Мой проект направлен на изучение данной проблемы и в связи с этим я ставлю для себя следующие задачи:

Он окружен керамикой, которая резонирует, и этот резонанс генерирует электромагнитные поля, которые можно измерить с помощью наших научных инструментов. Итак, в туннелях, рядом с керамическими блоками, мы измерили две частоты электромагнетизма. Первый - 83 Гц, что крайне малочастотно - в науке называется «резонанс Шумана». Вторая частота 28 кГц - это та самая частота, которую мы находим на вершине боснийской пирамиды Солнца. Похоже, что пирамида сосет все это электромагнитное поле из туннелей и увеличивает его, пропуская его через семь уровней с коридорами внутри пирамиды, вращающимися и поднимающимися.

  1. Выяснить, кода появились первые попытки воссоздания человеческих органов
  2. Рассказать о современных искусственных органах
  3. Объяснить принцип подбора материалов для их создания
  4. Показать «плюсы» и «минусы» искусственных органов
  5. Раскрыть принцип практического применения искусственных органов
  6. Провести социологические опросы и выявить отношение современных людей к внедрению в организм искусственных органов
  7. Выявить тенденции развития биологической науки в направлении создании искусственных органов в России.

Разработка приборов, способных брать на себя функции органов человеческого тела - одно из передовых направлений современной медицины. У организма есть множество функций: моторная, сенсорная, интеллектуальная и другие.

Частота 83 Герца является наиболее выгодной для всех живых организмов. Это лучшая частота для растений, животных, людей, лучше всего подходит для наших физических, умственных и духовных способностей. Именно эта частота испускается из керамических блоков в туннелях. Конечно, они не генерируют энергию из ниоткуда. И есть сложная система источников естественной энергии - движение энергии, электричества, железная пластина, которая генерирует электромагнетизм, кварцевый кристалл, который увеличивает эти энергетические силы, и, наконец, существование коридоров, которые также усиливают энергию.

Но особое место среди функций человеческого организма занимает функция собственного жизнеобеспечения. Если она не выполнена, то нет смысла говорить и о реализации других функций. Критически важные для жизни органы - это лёгкие, сердце, почки, сосудистая и пищеварительная системы, печень, а также некоторые другие компоненты. Уже сегодня существует оборудование, способное восполнять функции большинства основных органов жизнеобеспечения в течение продолжительного времени. Например, максимальный срок жизни человека со вспомогательным искусственным сердцем составляет 9 лет, максимальный срок жизни с использованием искусственных почек – 40 лет, максимальное время жизни пациента, питающегося от капельницы (минуя желудочно-кишечный тракт) – более 30 лет. Результаты, касающиеся других органов, пока более скромны, но и по ним есть прогресс

Более того, эта энергия движется через туннельный лабиринт и поднимается вверх по Пирамиде Солнца, тем самым питая всю Пирамиду. Вы бы представиться нашим читателям? Меня зовут Иванка Цачева и мне 50 лет. Климент Охридский Биотехнологические процессы с специализацией „генной и клеточной инженерией. “.

Какое научное учреждение вы представляете и что делает она? Академическая карьера началась на кафедре биохимии в отделе биологии. В этом отделе есть несколько тематических исследовательских групп, одна из которых является группа молекулярной иммунологии. Мы имеем дело с исследований, направленных на выявление молекулярных механизмов, лежащих в основе возникновения и развития группы заболеваний, вызываемых аутоиммунным. Эти заболевания, которые разблокированы под действием комбинации критических факторов и течение фаз обострения и затухания.

Данной темой я заинтересовалась по нескольким причинам. Во-первых, у одного из моих родственников, попавшего в автомобильную катастрофу, полностью функционирует только одна почка. Ему сообщили, что в будущем ему может быть имплантирована искусственная почка. Однако для этого потребуется несколько лет исследований. Меня заинтересовал принцип замены настоящих органов на искусственные. Во-вторых, в этом году я собираюсь поступать в МГМСУ на «кафедру трансплантологии и искусственных органов» и связать свою жизнь с данным типом деятельности. В-третьих, данная тема достаточно актуальна в наши дни. Ведь, создание искусственных органов позволяет продлить и сохранить жизнь человека.

К сожалению, неизлечимы в последние два десятилетия увеличилось во всем мире. Прикладная терапия при обострении может только контролировать, но не вылечить аутоиммунное состояние. Исследование болезни, называемой красной волчанки. В нем, как и в других аутоиммунных заболеваний в сыворотке крови появляются антитела, называемые аутоантитела, которые в зависимости от специфики атаки и повреждения различных органов. Мы направились к определенному типу аутоантител, чье появление повреждают почки и вызывает волчаночный нефрит.

Эти аутоантитела связываются с молекулой сыворотки, которая в противном случае имеет защитную функцию, но, когда он образует комплекс с аутоантител накапливаются в почках и тем самым приводят к повреждению. Целью нашей работы является выявление изменений в структуре молекулы в качестве мишени для аутоантител. Таким образом, может привести к обстоятельствам и причины возникновения этих аутоантител.

1. История создания искусственных органов и развитие современной биологической науки в данном направлении.

История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» - заменители естественных органов - люди стремились уже с давних времен. Еще 2000 лет назад греческий историк Геродот рассказывал о воине, который отрубил прикованную ступню, чтобы бежать из плена, и многие годы потом ходил с деревянной ногой. А при раскопках у итальянского города Капуи археологи нашли бронзовую ногу римского легионера, заменившую потерянную им в одном из сражений более 1500 лет назад. В средние века искусственные конечности - протезы стали делать подвижными.

В целях выявления структурных изменений в молекуле мы подошли путем создания искусственных молекулярных фрагментов, которые в исследовательских целях, за исключением того, могут служить для диагностики и терапии, направленных на волчаночный нефрит. То, что вы воспламенить, чтобы иметь дело с наукой, и когда это произошло?

Мой интерес к биологии был еще в школе. В средней школе в наше время, были мастерские, которые имели дело за пределами класса. Семинар биология была очень интересными благодаря усилиям нашего учителя. Это связано с его профессорами, и они показали нам невероятно интересные вещи. Одним из таких мероприятий проводятся в биохимической лаборатории, где с помощью цветных химических реакций создания аминокислот в бесцветных жидкостях. После переговоров и советы от нашего учителя биологии выбранной специальности «Биотехнология», которая тогда была совершенно новым и очень перспективным.

Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце (приложение 1). Вывод из этого опыта состоял в следующем: голова собаки, отделённая от туловища, но подключенная к донорским лёгким и новому аппарату способна сохранять жизнеспособность в течение нескольких часов, оставаясь в сознании и даже употребляя пищу. 1925 год принято считать началом отсчета в истории разработок искусственных органов.

У вас есть проект, утвержденный на последней сессии Фонда научных исследований, как он говорит, и какие преимущества он будет иметь для науки и жизни обычного человека? Кроме того, путем создания искусственных молекулярных фрагментов могут быть установлены средства для ранней диагностики, но и создать принципиально иной вид терапии, который является эффективным в хит «слабое место». Сочетание ранней диагностики и направленной терапии обеспечит более надежный способ для врачей, чтобы управлять болезнью, и почему бы не замедлить его, так как не влияет на продолжительность жизни.

В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор – аппарат заменяющий функцию легких. С этого момента существует теоретическая возможность поддерживать полный цикл жизнеобеспечения отделённых голов животных до нескольких суток. Однако на практике этого достичь не удаётся. Выявляется множество недостатков оборудования: разрушение эритроцитов, наполнение крови пузырьками, тромбы, высокий риск заражения. По этой причине, первое применение аналогичных аппаратов на человеке затягивается ещё на 17 лет.

Непосредственная выгода от этого проекта будет для тех, кто уже является болезнью. В более широком смысле, выгода будет для людей в целом, потому что через фундаментальные исследования постепенно выявить механизмы, лежащие в основе физиологии человека в норме и так являются способами профилактики, чтобы защитить человек от отпирания серьезных нарушений. Аналогичные исследования движущихся медицинских достижений, которые будут все более и более становятся молекулярное и личным. Какой титул был ваш последний пост?

Есть результаты, показывающие, что молекула зонда действительно претерпевает изменения в его структуре, и эти изменения сосредоточены в конкретных областях их. После этих изменений молекула становится узнаваемой для антител, уже присутствующих в сыворотке крови и ведут себя аутоантитело. Это исследование мы делали вместе с коллегами из Института молекулярной биологии Академии и медицинской команды из отдела нефрологии университетской больницы «Королев Джоанна».

В начале 1937 г. В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке. Но низкие технические характеристики нового прибора позволяют непрерывно использовать его в течение лишь полутора часов, после чего собака погибает.

В 1943 году нидерландский ученый В. Кольфф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку. Через год он уже применяет аппарат во врачебной практике, в течение 11 часов поддерживая жизнь пациентки с крайней степенью почечной недостаточности.

Эти результаты дают нам основание продолжать сужать «проблемную» зону. Есть ли будущее науки в Болгарии и как вы его видите? Наука имеет будущее, где существует несколько условий при условии. Первые соответственно образованные люди склонны заниматься наукой, второй - единицы соответственно оборудованными для проведения исследований, а третье - постоянного финансирование соответствующего размера. Каждое из этих условий является необходимым, но само по себе не достаточно. В Болгарии готовят достаточно хорошо молодых людей.

Причина этого утверждения дают мне мои длинные замечания, связанные с реализацией наших студентов. Эта часть из них, кто готов участвовать в науке, к сожалению, искать исполнения за пределами Болгарии по двум причинам - плохие условия труда и низкой заработной платы здесь. Все сразу же оцениваются и используются большинством исследователей в основном в Германии, Великобритании, Нидерландах, Бельгии, США. Это показывает, что они подготовлены с отличным знанием в этой области.

В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие. Начиная с этого времени, стационарные аппараты искусственного кровообращения становятся неотъемлемой частью кардиохирургии.

В 1963 Р. Вайт в течение примерно 3 суток поддерживает жизнеспособность отдельного мозга обезьяны.

С точки зрения единиц, надлежащим образом оборудованных для проведения исследований и финансирования соответствующего размера, все трагично. За некоторыми исключениями, исследовательские подразделения оснащены более амортизируется, устаревшим оборудованием. Возобновление их требует значительных финансовых ресурсов, которые будет СУ по различным причинам, главные из которых является государственной субсидией, которая определяется кучей случайных величин. Государственная субсидия должна соответствовать целям, реальная стоимость мероприятий, проводимых в университете - обучение и научных исследований.

В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека имплантируемое искусственное сердце. Сердце поддерживает жизнь пациента в течение 64 часов в ожидании человеческого трансплантанта. Но вскоре после трансплантации пациент погибает.

В течение последующих десятилетий разработки новых аппаратов не производятся. Устраняются ошибки предыдущих изобретений.

В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней.

В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца. В том же году учёные Калифорнийского университета заявляют о выпуске первого в мире образца портативной искусственной почки. Помимо этих результатов, в 2008 году происходят знаковые события в области разработки и других искусственных органов и частей тела. Так, компанией Touch Bionics был создан революционный высокореалистичный протез руки.

В 2010 в Калифорнийском университете разработана первая, имплантируемая бионическая почка, пока что не доведённая до серийного производства (приложение 2).

2. Современные искусственные органы, материалы для их создания.

Современная биологическая индустрия достигла своего пика. Появляются все новые и новые аппараты и приборы, на разработки которых уходит не десятки лет, а месяцы. Если раньше создание киборгов, было только сказкой, то современные изобретения позволяют в этом усомниться.

Первая область развития искусственных органов касается области человеческого мозга, возможности которого до конца не изучены. Тем не менее, определенные манипуляции с мозгом проводятся, в основном с целью излечения болезней. Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус - часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве. Поскольку гиппокампус зачастую подвергается нарушениям при нейродегеративных заболеваниях, то данный чип, ныне проходящий лабораторные испытания, может стать незаменимой вещью в жизни многих больных.

Немецким ученым из Института биохимии имени Макса Планка после длительных исследований удалось совместить живые клетки головного мозга с полупроводниковым чипом. Важность открытия заключается в том, что данная технология дает возможность выращивать очень тонкие полоски тканей на чипе, в результате чего он позволит очень подробно наблюдать взаимодействие всех нервных клеток между собой путем выявления сигналов, посылаемых клетками через синапсы.

А калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций» (приложение 3). Принцип работы заключается в том, что устройство сдерживает поток неконтролируемых импульсов во время припадков с помощью электрических разрядов из внешнего источника. Испытания Neuropace проводились на сотне пациентов, удовлетворительный результат просматривался практически у половины.

Еще одной областью внедрения искусственных органов является глазной аппарат. Существует множество вариантов создания искусственных глаз.

Группа специалистов консорциума Bionic Vision Australia презентовали свой бионический глаз в Университете Мельбурна (приложение 4). Лабораторные испытания уже проводятся, а более массовое внедрение ожидается к 2013 году.

Ученым Калифорнийского университета удалось создать протез, который способен выполнять функции сетчатки глаза. На данном этапе тестирования человек способен видеть только размытую картинку, но дальнейшие перспективы достаточно позитивны. Данный протез устроен так: на оправе очков закрепляется камера, через которую изображение передается прямо на уцелевшие нейроны в сетчатке глаза. Для перевода входящего видеосигнала в импульсы, которые способны воспринять нервные клетки, пришлось разработать специальный программно-аппаратный конвертер.

Стоит отметить, что качество зрения, которое предлагает используемая во всех вышеупомянутых устройствах технология напрямую зависит от количества светочувствительных электродов в имплантанте. Если на нынешнем этапе их всего 60, то в скором будущем это число планируют довести до 1000, что радикально улучшит восприятие – не просто передавая пятна света, но гораздо полноценнее сообщая человеку о происходящем вокруг.

А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации. Идея в том, что человек должен начать видеть с помощью языка (приложение 5).

Внешняя часть устройства, как обычно, включает в себя небольшую видеокамеру, вмонтированную в оправу очков и конвертер, преобразующий сигнал. Однако, вместо электродов, вживляемых в сетчатку и передающих данные на зрительные нервы, BrainPort оборудован небольшой трубкой с прямоугольным передатчиком, который необходимо положить на язык. Электрические импульсы передаются на него и в зависимости от их интенсивности, человек может распознавать наличие препятствий на пути.

Следующая область, в которой искусственные органы применяются достаточно часто, это слуховой аппарат человека. К счастью, в отличие от зрения, частичное и даже полное восстановление слуха реализуется проще, поэтому уже достаточно давно существуют слуховые аппараты или, по научному, кохлеарные имплантанты. Принцип их работы прост: с помощью микрофона, расположенного за ухом, аудиосигнал передается на вторую часть аппарата, стимулирующую слуховой нерв – по сути, слуховой аппарат увеличивает громкость воспринимаемого звука.

Так, например, профессором Мириам Фарст-Юст из Школы электротехники Тель-авивского университета был разработан новый вид прикладного программного обеспечения «Clearcall». Данная программа предназначена сугубо для кохлеарных имплантантов и слуховых аппаратов и позволяет более четко слышать в шумных местах звуки, распознавать речь, а также отфильтровывать фоновые шумы. Для того, что бы человек воспринимал нормально звуки, Clearcall работает с собственной базой данных звуков, в результате чего идет максимально точное отфильтровывание посторонних шумов и усиление «полезных» сигналов.

Что касается материалов для создания искусственных органов, то в основном используются полимеры. Например, полиэтилен низкой плотности и поликапролактам используется для создания изделий, контактирующих с тканями организма. Поликарбонат используется для создания корпуса и деталей желудочков и стимуляторов сердца. Флоропласт-4 используется для протезов сосудов и клапанов сердца. Полиметилметакрилат применяют для создания деталей аппаратов «искусственная почка», «сердце - легкие». А для создания бесшовных соединений используется цианакрилатный клей. Что касается плюсов и минусов современных искусственных органов, то можно сказать следующее:

Плюсы:

  1. Возможность сохранения человеческой жизни в случаях ожидания донорского органа
  2. Большое количество разработок и усовершенствование ныне существующих искусственных органов
  3. Возможность сохранения человеческой жизни в случае потери настоящего органа (имплантаты, протезы)
  4. Возможность замены нефункционирующего органа с рождения (слепота)

Минусы:

  1. Большой риск при внедрении нового органа
  2. Дорогая стоимость искусственных органов
  3. Отсутствие достаточного уровня развития современной биологической науки в данном направлении

Таким образом, подводя итог вышесказанного, можно сказать, что современная биологическая наука активно развивается в данном направлении.

3. Отношение общественности к искусственным органам

Как вы знаете, отношение к науке никогда не было однозначным. В истории развития человечества никогда не было единой точки зрения, как на происхождение человека, так и на пользу научных инноваций. Мною был проведен опрос среди 2-х социологических групп. Первая группа – лица от 16 до 25 лет. Вторая группа – от 26 до 45 лет. Количество участников в каждой группе 30 человек. Опрос состоял из следующих вопросов:

  1. Как вы относитесь к искусственным органам?
  2. Считаете ли вы, что искусственные органы способны продлить жизнь человеку?
  3. Как бы вы ответили на вопрос: «Лечить или заменить орган»?

Результаты опроса я представила в виде диаграмм (приложение 6)

Таким образом, исходя из данных диаграмм, мы видим, что люди старшего поколения наиболее презрительно относятся к искусственным органам. А молодое поколение, наоборот, считает, что искусственные органы – это будущее человечества. Отношение к развитию биологической науки в этом направлении неоднозначно. Однако я, проделав множество исследований этой проблемы, считаю, искусственные органы со временем помогут продлить жизнь человека, помогут справиться с врожденными дефектами и заболеваниями.

4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам. В США эта программа постоянно находится под патронажем президентов страны. Суммарные инвестиции в этих странах только частного капитала по разным направлениям программы составляют ежегодно миллиарды долларов. При этом они обеспечивают инвесторам непосредственную стабильную прибыль и гарантируют надежные политические и экономические перспективы.

Большинство искусственных органов в настоящее время достаточно большая роскошь. Исключение этому составляют протезы и слуховые аппараты. Поэтому большинство опытов и разработок искусственных органов в настоящее время происходит за рубежом, в странах Европы, в США. Но, тем не менее, современная Россия пытается идти в ногу со временем. В нашей стране все чаще финансируются биологические разработки в данной области науки, открываются все новые и новые кафедры, направленные на подготовку высококвалифицированных ученых в данном направлении. В России это направление получило государственную поддержку в 1974 году после заключения Межправительственного соглашения о сотрудничестве между СССР и США в области создания искусственного сердца.

При Государственном комитете СССР по науке и технике была создана Межведомственная комиссия, которая разработала комплексную программу НИР и ОКР на два года, полностью обеспеченную финансированием.

К сожалению, неудачное завершение сотрудничества по программе создания искусственного сердца, последующее сокращение финансирования, ослабление интереса руководства страны к его продолжению и наступившие в стране экономические и политические перемены 90-х годов практически полностью остановили работы по этому направлению. Развивавшиеся в России на начальном этапе дикие рыночные отношения переориентировали интересы специалистов на пересадку жизненно важных органов. При этом не был принят во внимание западный опыт современной трансплантологии, где, наряду с хорошо организованной (например, система «Евротрансплант») и законодательно защищенной клинической практикой пересадки жизненно важных органов (сердце, почка, печень, поджелудочная железа, легкие) нуждающимся больным, наблюдалось развитие криминального сектора трансплантологии.

Все эти годы работы по созданию и клиническому применению искусственных органов в ведущих странах и, в особенности, в США не только не прекращались, но обеспечивались приоритетным финансированием. Сегодня это направление объединяет последние мировые медико-биологические и технические разработки и технологии, в том числе, с привлечением к их созданию новейших достижений военно-промышленного комплекса. Стимулом являются невероятные рыночные прибыли и неограниченная востребованность разработок на медицинском рынке. К основным медицинским направлениям, для которых осуществляются разработки, являются сердечно - сосудистые заболевания, сахарный диабет, онкология, травматология.

5. Заключение

Подводя итог вышесказанного, мне хочется сказать, что вопрос о развитии и применении искусственных органов – достаточно спорный. Не существует единой точки зрения на данную проблему. Нет единой технологии производства и разработок в данной сфере, что положительно сказывается на развитии биологической науки. Вопрос о будущем применении искусственных органов остается спорным. Но лично я считаю, что в будущем человечество либо усовершенствует ныне существующие органы, либо найдет альтернативный путь решения этой проблемы. И кто знает, может, к концу 21 века люди будут иметь неограниченные возможности, и киборги станут не сказкой, а самой настоящей реальностью. Задачи, поставленные мной в начале проекта, достигнуты. Открыто новое научное знание. Получены практические, полезные результаты. Данный проект может быть применен при проведении уроков, семинаров, в качестве учебного пособия.

Список использованной литературы

  1. Брюхоненко С.С., Чечулин С.И. (1926), Опыты по изолированию головы собаки (с демонстрацией прибора) // Труды II Всесоюзного съезда физиологов. - Л.: Главнаука, - С. 289-290
  2. Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. - М.: Медгиз
  3. Гришманов В.Ю., Лебединский К.М. (2000). Искусственное питание: концепции и возможности // Мир Медицины (3-4), 26-32 С.
  4. Шутов ЕВ (2010). Перитонеальный диализ – М - 153 с
  5. Интернет-ресурсы:

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели