Научные картины мира и базовые онтологии. Научные картины мира и исследовательские программы

Научные картины мира и базовые онтологии. Научные картины мира и исследовательские программы

1) Картина мира как онтология научного знания . Одна из важней- ших функций картины мира в науке состоит в том, что она уста- навливает связь между научным знанием и тем реальным бытием, которое служит предметом его исследования. Именно поэтому она осуществляет онтологическую функцию в науке. Эта функция со- стоит в том, что научная картина мира формирует представления об объектах, фундаментальных понятиях и принципах, на которые опираются различные понятия и теории науки. Последние связы-ваются с исследуемым реальным миром не прямо и непосредствен- но, а опосредованно через картину мира соответствующей науки. Именно поэтому фундаментальные принципы картины мира соот- ветствующей науки выступают как ее онтологические постулаты, с которыми согласуются ее конкретные теории. На этом основании научные картины мира отдельных наук нередко называют дисциплинарными онтологиями, связывающими их с той объективной ре- альностью, которая не зависит от человека и его сознания. Сам термин «картина мира» ясно указывает, что она представляет собой образ исследуемого мира, и поэтому ее идеальные объекты имеют более наглядный характер, чем сложные абстракции конкретных наук. Именно благодаря существованию таких картин неспециалисты и образованные люди могут получить представление о характере развития научного знания и современном его состоянии.

В любой картине мира конкретной науки рассматриваются, прежде всего, те фундаментальные объекты, из которых построены все другие объекты ее теорий, а также указан характер взаимодейст- вия фундаментальных объектов. В механической картине мира, как мы видели, такими объектами являются неделимые корпускулы, или материальные точки, а характер их взаимодействия определяет- ся мгновенно действующей силой на расстоянии. Электромагнит-ная картина опирается на существование электромагнитного поля, в котором взаимодействие объектов происходит через близкодействие элементов поля за конечное время. Заменившая ее квантово-релятивистская картина отказалась и от представления о неделимо- сти атомов, и от существования мирового эфира, и от абсолютно-сти пространства-времени.

Опыт развитых наук вместе с тем показывает, что их научная картина мира в существенной степени изменялась, прежде всего, именно в результате перехода к изучению новых, более сложных явлений и процессов. Только благодаря этому ученые вынуждены были пересматривать свои прежние абстракции и идеализации. Ес- ли для изучения простых систем механики вполне достаточно было представлять их в форме структуры материальных точек, то переход к исследованию сложно организованных систем потребовал пере-смотра подобных идеализации. Вместо материальной точки стали рассматриваться атомы и элементарные частицы, непрерывность действия дополнена квантами, детерминистические предсказания — вероятностными и т.д.

2) Картина мира как систематизация научного знания .

Научные картины, создаваемые отдельными науками, так же как картины естествознания и мира в целом, ставят своей целью систе-матизацию знаний разной степени общности. Процесс системати-зации и синтеза знаний предполагает поиск таких общих понятий и принципов, с точки зрения которых становится возможным понять место и роль конкретных закономерностей в общей системе науч- ного знания. Поэтому картина природы, создаваемая отдельной наукой или естествознанием в целом, представляют собой систему знаний различной степени общности и глубины, которая возникает в результате их синтеза. При этом научная картина мира отдельной науки, например физики, будет частью или фрагментом общей ес-тественнонаучной картины природы. Поскольку же последняя со-ставляет часть реального мира, то естественнонаучная картина мира будет составлять часть общей картины мира в целом.

Если отдельные научные теории формулируют свои основные понятия и законы, чтобы объяснить и предсказать конкретные фак- ты изучаемой области, то картины отдельных научных дисциплин стремятся выделить их основные онтологические понятия и фунда- ментальные принципы. Опираясь на них, картина мира помогает понять роль и место отдельных теоретических понятий и законо- мерностей в общей системе научного знания. Именно в этом отно- шении она играет систематизирующую роль в познании, и благода- ря этому же приобретает эвристический и прогностический харак- тер. Действительно, в рамках узких границ отдельной научной теории или даже конкретной научной дисциплины трудно уловить общие тенденции развития достаточно широкой области явлений, а тем более природы и общества в целом. Обобщение и синтез зна-ния в научной картине мира дают возможность понять, в каком на- правлении происходит такое развитие, какие наиболее важные про-блемы выдвигаются перед конкретной наукой. Дальнейший этап систематизации и обобщения научного знания происходит в про- цессе создания естественнонаучной и социально-гуманитарной кар-тин мира. Наконец, свое завершение этот процесс находит при по-строении общенаучной картины мира , в результате которого проис- ходит формирование целостного взгляда на мир природы, место и роль в ней общества и человечества.

3) Научная картина мира как исследовательская программа .

Процесс обобщения и систематизации знания, который проис-ходит при формировании научных картин мира, предполагает ис- следование самых различных форм такой систематизации. Между тем под влиянием господствовавшей в последние полвека неопози- тивистской философии науки основной формой системного знания в науке признавалась только теория. После критики неопозитиви- стской философии науки многие западные ученые обратили внима- ние на роль культурно-исторических и мировоззренческих факто-ров на развитие науки. Среди них особенного внимания заслужива- ет обсуждение таких форм развития научного знания, как анализ исторических традиций и особенно выдвижение исследовательских программ. Они интересны тем, что ориентируют историков и фило-софов науки на изучение тенденций и традиций в истории развития науки (концепция Л. Лаудана ) и общих исследовательских про-грамм (концепция И. Лакатоса ). Хотя эти концепции преодолевают ограниченность неопозитивистской философии, однако не подчер-кивают, во-первых, роль онтологических представлений науки во- обще и научной картины мира в частности, во-вторых, не обраща-ют внимания на значение междисциплинарных исследований в обобщении и систематизации научного знания, в-третьих, забывают о преемственности в развитии этого знания.

Рассмотрение научной картины мира в контексте исследова- тельской программы предполагает, прежде всего, ясное представле- ние о ней как специфической форме научного знания, в которой формулируются исходные онтологические понятия и принципы, на которые опираются соответствующие абстракции конкретных науч-ных теорий. Отчетливое понимание онтологического характера на- учной картины мира позволяет установить четкое различие между ее основными понятиями и принципами, с одной стороны, и абст- рактными понятиями и законами конкретных теорий, с другой. Первые — шире по охвату изучаемой действительности и конкрет- нее по содержанию, вторые — уже по объему и беднее, абстрактнее по содержанию. Этим объясняется тот факт, что научная картина продолжает существовать при замене одних конкретных теорий другими. Поэтому преемственность знаний в науке выступает в ви- де сохранения связи между исторически преходящими и вновь воз- никающими научными картинами мира.

Сам процесс формирования отдельной научной картины мира происходит в результате обобщения и синтеза исходных понятий и законов отдельных ее теорий в ходе исторического развития кон- кретной научной дисциплины. Возникновение более общей картины мира, например естествознания, предполагает междисциплинарный анализ идей и принципов различных дисциплин, изучающих приро- ду. Еще более обширный и глубокий анализ приводит к формирова- нию общей научной картины мира. Таким образом, научные карти- ны различного уровня общности и глубины можно рассматривать как результат осуществления соответствующей исследовательской программы. В общем смысле само развитие науки можно рассматри- вать как реализацию некоторой исследовательской программы.

К онтологическим проблемам экономики относятся следующие направления исследований: понятие онтологии экономического знания; экономическая картина мира и изменение онтологии эко­номического знания; этапы развития экономического знания; ис­ходные понятия экономической онтологии; субъекты и объекты в экономике; уровни экономической реальности; типы взаимодей­ствий в экономике; специфика пространства и времени в эконо­мике и их взаимоотношения; детерминизм и причинность в эконо­мике; представление об экономике как системе.

В данной главе будет рассмотрена только часть проблем данной темы, в том числе будет раскрыто содержание и показана транс­формация понятий «дисциплинарная онтология экономической науки», «экономическая реальность», «экономическая картина мира», «онтологические предпосылки экономической науки», «экономическое пространство» и «экономическое время». (Про­блемам экономического детерминизма и этапам развития эконо­мического знания посвящена гл. 9.)

В контексте философии онтология - это учение о бытии в целом, о его основных свойствах и структуре. В современной фи­лософии науки выделяют два основных смысла понятия онтологии:

1) субстанционалистский - соответствует приведенному нами выше определению онтологии; 2) субъектно-лингвистический (конструктивистский) - онтология трактуется как теоретическая конструкция исследуемой реальности .

Понятие онтологии пришло в науку не так давно: в естественных науках оно стало использоваться вместо понятия природы во второй половине XX в., показывая тем самым, что ученый не столько отра­жает, описывает объект познания, сколько конструирует его. В на­стоящее время в естественных и социально-гуманитарных науках онтология понимается и в первом (субстанционалистском), и во втором (конструктивистком) смысле. Обе интерпретации сохра­няются в применении к дефиниции дисциплинарной онтологии, которая понимается сегодня как представление (и его основания) об определенной сфере реальности, например экономической, со­циальной, исторической. В.С. Стёпин отмечает, что во избежание путаницы в случае частных наук употребляется также термин «кар­тина исследуемой реальности» . Согласно О.И. Ананьину, дис­циплинарная онтология экономической науки есть «общая картина экономической реальности» . Таким образом, онтология в современной науке понимается и как теоретическая конструкция исследуемой реальности, и как субъектно-объектные основания, лежащие в фундаменте этой конструкции.

Конструктивистское понимание онтологии восходит к работам М. Хайдеггера и Г. Гадамера; с этой точки зрения, изучение онто­логической проблематики понимается как «анализ значения язы­ковых конструкций, средств, описывающих мир» . В ас­пекте дисциплинарной онтологии первостепенное внимание уделя­ется прежде всего анализу текстов, в которых нашла выражение та или иная научная теория, с целью интерпретировать и сконструи­ровать «смысл теории, а не реконструировать стоящую за ней ре­альность» .

Дисциплинарная онтология той или иной науки строится на ба­зовых категориях, которые, в свою очередь, образуют структуры концепций и теорий. Каждая концепция или теория определенным образом «отражает» (представляет) исследуемую наукой реальность. Система таких идеальных образов реального мира, представленных в теории той или иной науки, составляет дисциплинарную онто­логию данной науки. Дисциплинарные онтологии являются частью научной парадигмы. Изучение экономических онтологий позволяет ученым-экономистам: а) пересматривать категориальный «сло­варь» науки, создавать новые категории, отражающие современное состояние науки, ее актуальные проблемы; б) осуществлять свое-

образную чистку научного языка, устраняя из него двусмыслен­ности и уточняя понятия; в) определять и формулировать миро­воззренческие и методологические предпосылки экономических теорий, показывать взаимосвязь последних с теоретическими и практическими достижениями и проблемами других наук.

Тем не менее сегодня в экономической науке изучение дисцип­линарных онтологий имеет недолгую историю. Такая ситуация свя­зана главным образом с ориентацией господствующей в экономи­ческой науке неоклассической парадигмой на тот идеал научного знания, который сформировался в эпоху Нового времени. Суть этого идеала заключается в стремлении ученых познать универ­сальные законы реальности, стоящие за отдельными вещами, про­цессами и явлениями как предметом науки. Ориентация на уни­версальные законы предполагает: а) регистрацию наиболее общего, универсального в анализируемых явлениях и процессах, т.е. отказ от принципа историчности в исследовании объектов научного познания; б) преимущественный акцент на разработке аналити­ческого инструментария, чаще всего в математической форме. Эти особенности характерны и для экономической науки. Так, в конце XIX в. в трудах Л. Вальраса (1874) и А. Маршалла (1890) формируется инструментальное понимание экономики как со­вокупности аналитических инструментов для анализа различных явлений и процессов. Математический аппарат становится систе­мообразующим по отношению к единству экономической науки; применяемые методы имеют в основном узкоприкладное значение, что позволяет использовать экономические модели в других об­щественных науках; ученый-экономист стремится не к познанию онтологического статуса объекта познания, а к сбору информации об объекте и разработке способов оперирования этой информа­цией . Это формирует основу для возникновения феномена экономического империализма. Данные процессы привели к де­фициту экономических теорий, дающих системный взгляд на эко­номическую реальность . Парадокс современной эконо­мической науки заключается в том, что, понимая экономическую науку как процесс познания экономической реальности и стре­мясь постичь универсальные экономические законы, ученые в то же время абстрагируются от познаваемой реальности, порой даже игнорируют ее. Отсюда еще одна характерная черта современной экономической науки - отказ от использования и анализа пред­посылок экономических теорий как от несущественных элементов теории. В результате мы наблюдаем конфликт между экономиче­скими теориями и экономической реальностью .

В 1970-80-х гг. в экономической науке происходит методоло­гический переворот, связанный с обособлением методологии эко­номической науки в отдельную сферу, следствием чего стало появ­ление специальных исследований экономических онтологий. Как отмечает О.И. Ананьин, методологический переворот был ответом на переориентацию методологических исследований в экономи­ческой науке с нормативных на дескриптивные. На этом пути эко­номическая методология поставила проблему оснований экономи­ческого знания .

Цель ученого, изучающего дисциплинарные онтологии, в том числе экономической науки, заключается в воссоздании парадиг- мальных (по Т. Куну) положений научного исследования (теоре­тико-методологических предпосылок, выраженных в понятийно­концептуальной форме). Как пишет О.И. Ананьин, эти предпо­сылки не всегда осознаются авторами тех или иных экономических теорий (см.: ). По сравнению с экономическими дисциплинар­ными онтологиями мировоззрение ученого-экономиста является более широким смысловым полем, в котором строгая теория гра­ничит со здравым смыслом. Последний выступает своеобразным «фильтром», проходя через который и соприкасаясь с другими элементами мировоззрения (верованиями, привычками, идеалами, ценностями и пр.), теоретико-методологические предпосылки принимают вид картины мира. Как и дисциплинарные онтологии, мировоззрение изначально (в своем непосредственном, скрытом внутри той или иной теории виде) может быть неотрефлектиро- вано; однако и мировоззрение, и дисциплинарные онтологии нуж­даются в такой рефлексии и не могут существовать без нее.

Постигая онтологические предпосылки определенной экономи­ческой теории, мы выявляем те ключевые моменты мировоззрения ученого (группы ученых), которые, подобно некоему каркасу, держат все его мировоззрение, в том числе созданную этим ученым (группой ученых) экономическую теорию.

По мнению О.И. Ананьина, можно выделить следующие исто­рико-экономические варианты описания экономических онто­логий: 1) понятие предрассудков в теории Т. Веблена; 2) теория видения у Й. Шумпетера; 3) научно-исследовательские программы И. Лакатоса; 4) понятие предпосылок у М. Фридмена; 5) кон­цепция социально-экономических машин Н. Картрайт .

В основании любой экономической онтологии лежит опре­деленное представление об экономической реальности как спе­цифической форме бытия. Экономическая реальность - «сфера человеческой деятельности, в рамках которой происходит при-

нятие и осуществление решений, связанных с созданием и ис­пользованием благ, удовлетворяющих человеческие потребности» . О.И. Ананьин понимает экономическую реальность как цикл, в котором взаимодействуют условия, решения и продукт. На наш взгляд, данное определение является слишком узким, по­скольку замыкается на человеке и его потребностях, лишь косвенно включая в сферу экономической реальности окружающую человека первичную (природа) и вторичную (социум) среду. Более много­плановым и в то же время пересекающимся по содержанию с поня­тием экономической реальности является понятие экономической картины мира, дающее представление о совокупности взглядов на субъект и объект хозяйства, их место и способы взаимодей­ствия, формы управления и типы хозяйственной деятельности. Тем не менее именно определение, представленное О.И. Ананьиным, является господствующим в современной экономической теории (mainstream). Выделим следующие типы дисциплинарных онто­логий в экономической науке (табл. 8.1 (по: )).

Таблица 8.1

Типы дисциплинарных онтологий в экономической науке

Период образо­вания

и господства, представители

Продуктовая

(производ­

ственная)

Р. Кантильон, Ф. Кенэ,

А. Смит, Д. Ри­кардо

Основные категории: факторы производства (земля - труд - ка­питал); типы агентов: земельные соб­ственники - рабочие - капиталисты; типы доходов: рента - зарплата - при­быль; стоимость; цена; национальный доход.

Характеристика: господствует субстан­циональная интерпретация онтологии; экономическая реальность объективна; ученый является внешним наблю­

дателем; экономическая реальность описывается в терминах «важнейших структурных инвариантов (затраты - результаты, продукт - доходы, сбе­режения - инвестиции и т.д.)» ; равновесное состояние экономической системы является нормальным (есте­ственным); использование в анализе макроэкономических данных

Окончание табл. 8.1

Тип дисцип­линарной онтологии Период образо­вания

и господства, представители

Основные категории и краткая характеристика
Поведенче­ская (функ­циональная или об­менная) Сформиро­валась в ходе маржина- листской революции 1870-90-х гг.; элементы этой онтологии можно обнару­жить частично уже в трудах

А. Смита. Нео­классическая экономическая теория, нео- институцио­нализм

Основные категории: поведение, выбор, рациональность, максимизация полезности, потребности, ресурсы, информация, экономический человек, рынок.

Характеристики: предметом эконо­мической науки являются отношения обмена и поведение индивида (эко­номического человека), в том числе принятие решений о распределении и использовании ресурсов ; природа индивида универсальна и неизменна, индивид рационален и стремится к максимизации полезности (выгоды, дохода); использование в анализе ми­кроэкономических данных; исполь­зование формализации, в частности математического аппарата, в экономи­ческом анализе

Институцио­ Немецкая историческая школа (XIX в.), традиционный институцио­нализм, неко­торые течения нового инсти­туционализма, например новая эко­номическая история (XX в.) Основные категории: институты, нормы, социальное поведение, ограни­ченная рациональность.

Характеристики: предметом экономи­ческой науки выступают институты - «стереотипы и нормы поведения, организационные структуры эконо­мической деятельности» в их раз­витии; экономическая система является неравновесной, она формируется и раз­вивается в конкретных социально-исто­рических условиях

На данный момент можно констатировать борьбу двух онто­логий - поведенческой и институциональной. Если проанали­зировать данное выше определение экономической реальности, станет ясно, что оно построено в границах определенной - по­веденческой - онтологии и, следовательно, может быть расши­рено за счет привлечения элементов двух других онтологий. Одной

из особенностей поведенческой онтологии, по мнению О.Б. Ко- шовца и И.Э. Фролова, является наличие своего рода фильтра между ученым-экономистом и собственно экономической ре­альностью; этим фильтром выступает математическая реальность (формальная онтология). В результате процесс научного познания в экономике предстает как процесс конструирования (моделиро­вания) «логически возможных миров» , т.е. уходит практи­чески целиком в сферу идеального, обрывая связи с реальным. Как результат снижается способность экономических теорий давать общую картину экономической реальности: экономическая наука парадоксальным образом становится пространством частных, рас­сматривающих весьма конкретные обстоятельства теорий, которые могут противоречить друг другу. Парадокс этой ситуации заключа­ется в том, что экономика по-прежнему декларирует как свою цель поиск и формулировку универсальных законов экономической ре­альности.

Подобная замкнутость экономической науки внутри себя самой приводит к логичной мысли о необходимости развития междисцип­линарного сотрудничества экономики, в особенности с другими социальными науками (социологией, психологией, философией), для того чтобы разрешить системный кризис, в котором сегодня оказалась экономика и как теоретическая, и как практическая дея­тельность.

Сегодня проблематика экономической онтологии разрабатыва­ется в следующих направлениях.

1. Критический реализм - направление в европейской и аме­риканской философии, развивавшееся во второй половине XIX - первой половине XX в. и имеющее продолжение в наши дни.

Представителями данного направления являются: А. Риль, О. Кюльпе, Э. Бехер, А. Прингл-Пэттисон, Р. Адамсон, Дж.Д. Хикс, Р. Башкар, Дж. Урри, Р. Кит, Э. Колье, Т. Лоусон, У. Мяки, Д. Ха- усман. и др. Исследования в области экономических онтологий раз­ворачивались в рамках дискуссии о статусе «социального» в обще­ственных науках. Эта дискуссия, в свою очередь, восходит к одной из фундаментальных философских проблем - проблеме субъекта и объекта познания. С точки зрения критического реализма со­циальные науки познают сущность социальной реальности как «имманентно присущие ей и ненаблюдаемые субъектом структуры, механизмы, законы» , неизменное основание социальных явлений. Эти посылки позволяют представителям данного на­правления критиковать ортодоксальную экономическую теорию (mainstream). Так, Т. Лоусон возражает против сведения онтологи-

ческих исследований в экономике к эпистемологии, когда анализ направлен только на выявление онтологических предпосылок экономических теорий. Ученый считает, что экономическая онто­логия должна представлять собой часть полноценной картины со­циальной реальности, создаваемой на основе изучения социальных систем. Однако в теории Лоусона остается неясной взаимосвязь такой онтологии с конкретными экономическими теориями.

2. Исследования Дж. Ходжсона и Р. Сагдэна.

Онтологическая проблематика экономической теории исследу­ется этими учеными в аспекте проблемы реалистичности эконо­мических моделей. Дж. Ходжсон полагает, что реалистичность мо­дели не является первостепенным требованием, поскольку гораздо важнее, чтобы модель (или эвристика, по терминологии Ходжсона) успешно вскрывала определенную причинно-следственную связь в исследуемой области. Р. Сагдэн, соглашаясь с Ходжсоном, уточ­няет, что такие эвристики (в терминологии Сагдэна - правдопо­добные миры) могут быть своеобразным мостиком от модели к ре­альности. Однако в рамках данного подхода связь между моделью и реальностью является преимущественно формальной и основы­вается только на простом правдоподобии модели .

3. Конструктивизм Р. Лукаса.

Американский экономист Р. Лукас выступает в защиту mainstream и предлагает решать проблему реалистичности эконо­мических теорий исходя из того, что не модель должна соответ­ствовать реальности, а наоборот, реальность - модели. Недостаток данного подхода заключается в том, что его применение в области экономической политики осуществляется без учета социально­исторического своеобразия различных экономических сообществ, на основе принципов методологического универсализма.

В целом можно выявить следующие основные тенденции в об­ласти онтологического анализа экономических теорий:

Различные модификации продуктовой онтологии;

Обоснование и развитие поведенческой онтологии;

Концепции, предлагающие специальные социальные онтологии для экономической теории ;

Попытки формирования новой, сугубо экономической онто­логии.

Классификация научных революций

Существует множество классификаций научных революций. Выделим некоторые их них, на наш взгляд, отражающие суть проблемы.

Классификация №1

Эта классификация основывается на разделении наук на общие и частные.

· Частнонаучные революции: изменяют основания частных наук, таких как химия, математика и др.

· Общенаучные революции: изменяют основания всех наук, например, при появлении теории относительности Эйнштейна.

Классификация №2

Эта классификация учитывает изменяемые научной революцией предметные, теоретические, мировоззренческие и методологические основания:

· Построение новых фундаментальных теорий – кардинальные сдвиги в познании мира (например, ньютоновская механика, теория относительности Эйнштейна). Революция затрагивает мировоззренческие и методологические проблемы.

· Внедрение новых методов исследования, что меняет не только проблемы, но и стандар­ты научной работы, приводя к появлению новых областей знания. Появление микроскопа в биологии, например, определило саму возможность микробиологии.

· Открытие новых миров, связанное с обнаружением каких-то ранее неизвестных сфер или аспектов действительности, например, мира микроорганизмов и вирусов, атомов и молекул, электромагнитных явлений, элементарных частиц. Открытие новых миров осуществляют и гуманитарные науки, например, открытие прошлого как особого мира и объекта познания (расшифровка египетской письменности).

Классификация №3

Эта классификация научных революций принадлежит В.С. Степину (10):

· Глобальные: меняются все основания науки (по Степину, эти основания – научная картина мира, например, механистическая; идеалы и нормы науки, характеризующее стиль мышления; а также философско-мировоззренческие основания). Процесс глобальных революционных изменений долгий. Выделяются четыре глобальные научные революции, которые мы рассмотрим, когда будем анализировать исторические типы научной рациональности.

· Локальные: перестройка картины исследуемой реальности без существенного изменения ранее сложившихся идеалов и норм науки и философских оснований.

· Мини-революции.

В истории естествознания можно обнаружить четыре революции.

Первой была революция XVII - становление классического естествознания Через все классическое естествознание с XVII века проходит идея, согласно которой объективность и предметность научного знания достигаются только тогда, когда из описания и объяснения исключается все, что относится к субъекту и процедурам его познавательной деятельности.

Идеалы естествознания XVII-XVIII опирались на систему философских оснований, где доминирующую роль играли идеи механицизма. В качестве эпистемологической составляющей этой системы выступали представления о познании как наблюдении и экспериментировании.



Радикальные перемены произошли в первой половине XIX. Их можно расценить как вторую глобальную научную революцию, определившую переход к новому состоянию естествознания - дисциплинарно организованной науке.

Механическая картина мира утрачивает статус общенаучной. В биологии, химии и др формируются специфические картины реальности, нередуцируемые к механической. В биологии и геологии возникают идеалы эволюционного объяснения, в то время как физика продолжает строить свои знания, абстрагируясь от идеи развития. Все эти изменения затрагивали главным образом слой, выражающий специфику изучаемых объектов. Что же касается общих познавательных установок классической науки, то они еще сохраняются в данный исторический период.

В эпистемологии центральной становится проблема соотношения разнообразных методов науки, синтеза знаний и классификации наук. Выдвижение ее на передний план связано с утратой прежней целостности научной картины мира, а также с появлением специфики нормативных структур в различных областях научного исследования. Поиск путей единства науки, проблема дифференциации и интеграции знания превращаются в одну из фундаментальных философских проблем, сохраняя свою остроту на протяжении всего последующего развития науки.

Первая и вторая глобальные революции в естествознании протекали как формирование и развитие классической науки и ее стиля мышления.

Третья глобальная научная революция связана со становлением неклассического естествознания. С конца XIX до середины XX. В физике (открытие делимости атома, становление релятивистской и квантовой теории), в космологии (концепция нестационарной Вселенной), в биологии (становление генетики). Возникает кибернетика и теория систем.

Нормы неклассической науки характеризовались отказом от прямолинейного онтологизма и пониманием относительной истинности теорий. В противовес идеалу единственно истинной теории допускается истинность нескольких. Осмысливаются корреляции между онтологическими постулатами науки и характеристиками метода, посредством которого осваивается объект. Принимаются такие типы объяснения и описания, которые в явном виде содержат ссылки на средства и операции познавательной деятельности. Новая система познавательных идеалов и норм обеспечивала расширение поля исследуемых объектов, открывая пути к освоению сложных саморегулирующихся систем.

НАУЧНАЯ КМ - целостный образ предмета научного исследования в его главных системно-структурных характеристиках, формируемый посредством фундаментальных понятий, представлений и принципов науки на каждом этапе ее исторического развития. Различают основные разновидности (формы) научной картины мира:

1) общенаучную как обобщенное представление о Вселенной, живой природе, обществе и человеке, формируемое на основе синтеза знаний, полученных в различных научных дисциплинах;

2) социальную и естественнонаучную картины мира как представления об обществе и природе, обобщающие достижения соответственно социально-гуманитарных и естественных наук;

3) специальные научные картины мира (дисциплинарные онтологии) - представления о предметах отдельных наук (физическая, химическая, биологическая и т. п. картины мира). В последнем случае термин «мир» применяется в специфическом смысле, обозначая не мир в целом, а предметную область отдельной науки (физический мир, биологический мир, мир химических процессов).

В структуре научной картины мира можно выделить два главных компонента - понятийный и чувственно-образный. Понятийный представлен философскими категориями (материя, движение, пространство, время и др.) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений, детерминизма и др.), общенаучными понятиями и законами (например, закон сохранения и превращения энергии), а также фундаментальными понятиями отдельных наук (поле, вещество, Вселенная, биологический вид, популяция и др.). Чувственно-образный компонент научной картины мира - это совокупность наглядных представлений о тех или иных объектах и их свойствах (например, планетарная модель атома, образ Метагалактики в виде расширяющейся сферы и др.). Главное отличие научной картины мира от ненаучных картин мира (например, религиозной) состоит в том, что научная картина мира строится на основе определенной доказанной и обоснованной фундаментальной научной теории. Вместе с тем научная картина мира как форма систематизации знания отличается от научной теории. Если научная картина мира отражает объект, отвлекаясь от процесса получения знания, то научная теория содержит в себе не только знания об объекте, но и логические средства проверки их истинности. Научная картина мира играет эвристическую роль в процессе построения частных научных теорий.

Научные картины мира выполняют три основные взаимосвязанные функции в процессе исследования:

1) систематизируют научные знания, объединяя их в сложные целостности;

2) выступают в качестве исследовательских программ, определяющих стратегию научного познания;

3) обеспечивают объективацию научных знаний, их отнесение к исследуемому объекту и их включение в культуру.

Концепция Вячеслава Стёпина о 4-х революциях в науке:

1 революция (17 в. -1 пол. 18 в.)- Формирование механистической КМ: любое событие можно определить в начальном состоянии, всё со всем связано, поэтому всё можно просчитать.

2 революция (к. 18 в. – 1 пол. 19 в.) – Эволюционная теория Ч. Дарвина. Вера в совершенство будущего человека.

3 революция (к. 19 в – вер. 20 в.) – Неклассическая научная рациональность: возникновение генетики, квантовой физики. Мир – единая кибернетическая система способная к синергетичности. Относительность всех фактов, событий. Релятивизм науки.

4 революция (2 пол.20 в. – по настоящее время) – Постнеклассическая наука: компьютеризация, увеличение роли междисциплинарных наук. Мир, как информационная виртуальная матрица, перенос методов из одной науки в другую. Наука рассматривается в связи с историей культуры. Наука перестаёт быть элитарной.

Научно-исследовательская программа (по Лакатосу) - единица научного знания; совокупность и последовательность теорий, связанных непрерывно развивающимся основанием, общностью основополагающих идей и принципов.

Проблема роста научного знания всегда занимала умы учёных и мыслителей, независимо от их взглядов и пристрастий или принадлежности к различным направлениям науки или религии. В некоторых случаях данная проблема является ключевой для всей системы тех или иных научных изысканий.

Второй блок оснований науки составляет научная картина мира. В развитии современных научных дисциплин особую роль играют обобщённые схемы – образы предмета исследования, посредством которых фиксируются основные системные характеристики изучаемой реальности. Эти образы часто именуют специальными картинами мира. Термин «мир» применяется здесь в специфическом смысле – как обозначение некоторой сферы действительности, изучаемой в данной науке («мир физики», «мир биологии» и т. п.). Чтобы избежать терминологических дискуссий, имеет смысл пользоваться иным названием – картина исследуемой реальности. Наиболее изученным её образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания.
Обобщённая характеристика предмета исследования вводится в картине реальности посредством представлений: 1) о фундаментальных объектах, из которых полагаются построенными все другие объекты, изучаемые соответствующей наукой; 2) о типологии изучаемых объектов; 3) об общих закономерностях их взаимодействия; 4) о пространственно-временной структуре реальности. Все эти представления могут быть описаны в системе онтологических принципов, посредством которых эксплицируется картина исследуемой реальности и которые выступают как основание научных теорий соответствующей дисциплины. Например, принципы: мир состоит из неделимых корпускул; их взаимодействие осуществляется как мгновенная передача сил по прямой; корпускулы и образованные из них тела перемещаются в абсолютном пространстве с течением абсолютного времени – описывают картину физического мира, сложившуюся во второй половине XVII в. и получившую впоследствии название механической картины мира.
Переход от механической к электродинамической (последняя четверть XIX в.), а затем к квантово-релятивистской картине физической реальности (первая половина XX в.) сопровождался изменением системы онтологических принципов физики. Особенно радикальным он был в период становления квантово-релятивистской физики (пересмотр принципов неделимости атомов, существования абсолютного пространства – времени, лапласовской детерминации физических процессов).
По аналогии с физической картиной мира можно выделить картины реальности в других науках (химии, биологии, астрономии и т. д.). Среди них также существуют исторически сменяющие друг друга типы картин мира, что обнаруживается при анализе истории науки. Например, принятый химиками во времена Лавуазье образ мира химических процессов был мало похож на современный. В качестве фундаментальных объектов полагались лишь некоторые из известных ныне химических элементов. К ним приплюсовывался ряд сложных соединений (например, извести), которые в то время относили к «простым химическим субстанциям». После работ Лавуазье флогистон был исключён из числа таких субстанций, но теплород ещё числился в этом ряду. Считалось, что взаимодействие всех этих «простых субстанций» и элементов, развёртывающееся в абсолютном пространстве и времени, порождает все известные типы сложных химических соединений.
Такого рода картина исследуемой реальности на определённом этапе истории науки казалась истинной большинству химиков. Она целенаправляла как поиск новых фактов, так и построение теоретических моделей, объясняющих эти факты.
Каждая из конкретно-исторических форм картины исследуемой реальности может реализовываться в ряде модификаций, выражающих основные этапы развития научных знаний. Среди таких модификаций могут быть линии преемственности в развитии того или иного типа картины реальности (например, развитие ньютоновских представлений о физическом мире Эйлером, развитие электродинамической картины мира Фарадеем, Максвеллом, Герцем, Лоренцем, каждый из которых вводил в эту картину новые элементы). Но возможны и другие ситуации, когда один и тот же тип картины мира реализуется в форме конкурирующих и альтернативных друг другу представлений о физическом мире и когда одно из них в конечном итоге побеждает в качестве «истинной» физической картины мира (примерами могут служить борьба Ньютоновой и Декартовой концепций природы как альтернативных вариантов механической картины мира, а также конкуренция двух основных направлений в развитии электродинамической картины мира – программы Ампера – Вебера, с одной стороны, и программы Фарадея – Максвелла, с другой).
Картина реальности обеспечивает систематизацию знаний в рамках соответствующей науки. С ней связаны различные типы теорий научной дисциплины (фундаментальные и частные), а также опытные факты, на которые опираются и с которыми должны быть согласованы принципы картины реальности. Одновременно она функционирует в качестве исследовательской программы, которая целенаправляет постановку задач как эмпирического, так и теоретического поиска и выбор средств их решения.
Связь картины мира с ситуациями реального опыта особенно отчётливо проявляется тогда, когда наука начинает изучать объекты, для которых ещё не создано теории и которые исследуются эмпирическими методами. Одной из типичных ситуаций может служить роль электродинамической картины мира в экспериментальном изучении катодных лучей. Случайное обнаружение их в эксперименте ставило вопрос о природе открытого физического агента. Электродинамическая картина мира требовала все процессы природы рассматривать как взаимодействие «лучистой материи» (колебаний эфира) и частиц вещества, которые могут быть электрически заряженными или электрически нейтральными. Отсюда возникали гипотезы о природе катодных лучей: одна из них предполагала, что новые физические агенты представляют собой поток частиц, другая рассматривала эти агенты как разновидность излучения. Соответственно этим гипотезам ставились экспериментальные задачи и вырабатывались планы экспериментов, посредством которых была выяснена природа катодных и рентгеновских лучей. Физическая картина мира целенаправляла эти эксперименты, последние же, в свою очередь, оказывали обратное воздействие на картину мира, стимулируя её уточнение и развитие (например, выяснение природы катодных лучей в опытах Крукса, Перрена, Томсона было одним из оснований, благодаря которому в электродинамическую картину мира было введено представление об электронах как «атомах электричества», не сводимых к «атомам вещества»).
Кроме непосредственной связи с опытом картина мира имеет с ним опосредованные связи через основания теорий, которые образуют теоретические схемы и сформулированные относительно них законы.
Картину мира можно рассматривать в качестве некоторой теоретической модели исследуемой реальности. Но это особая модель, отличная от моделей, лежащих в основании конкретных теорий.
Во-первых, они различаются по степени общности. На одну и ту же картину мира может опираться множество теорий, в том числе и фундаментальных. Например, с механической картиной мира были связаны механика Ньютона – Эйлера, термодинамика и электродинамика Ампера – Вебера. С электродинамической картиной мира связаны не только основания максвелловской электродинамики, но и основания механики Герца.
Во-вторых, специальную картину мира можно отличить от теоретических схем, анализируя образующие их абстракции (идеальные объекты). Так, в механической картине мира процессы природы характеризовались посредством таких абстракций, как: «неделимая корпускула», «тело», «взаимодействие тел, передающееся мгновенно по прямой и меняющее состояние движения тел», «абсолютное пространство» и «абсолютное время». Что же касается теоретической схемы, лежащей в основании ньютоновской механики (взятой в её эйлеровском изложении), то в ней сущность механических процессов характеризуется посредством иных абстракций таких как, «материальная точка», «сила», «инерциальная пространственно-временная система отсчёта».
Аналогичным образом можно выявить различие между конструктами теоретических схем и конструктами картины мира, обращаясь к современным образцам теоретического знания. Так, в рамках фундаментальной теоретической схемы квантовой механики процессы микромира характеризуются в терминах отношений вектора состояния частицы к вектору состояния прибора. Но эти же процессы могут быть описаны «менее строгим» образом, например в терминах корпускулярно-волновых свойств частиц, взаимодействия частиц с измерительными приборами определённого типа, корреляций свойств микрообъектов к макроусловиям и т. д. И это уже не собственно язык теоретического описания, а дополняющий его и связанный с ним язык физической картины мира.
Идеальные объекты, образующие картину мира, и абстрактные объекты, образующие в своих связях теоретическую схему, имеют разный статус. Последние представляют собой идеализации, и их нетождественность реальным объектам очевидна. Любой физик понимает, что «материальная точка» не существует в самой природе, ибо в природе нет тел, лишённых размеров. Но последователь Ньютона, принявший механическую картину мира, считал неделимые атомы реально существующими «первокирпичиками» материи. Он отождествлял с природой упрощающие её и схематизирующие абстракции, в системе которых создаётся физическая картина мира. В каких именно признаках эти абстракции не соответствуют реальности – это исследователь выясняет чаще всего лишь тогда, когда его наука вступает в полосу ломки старой картины мира и замены её новой.
Будучи отличными от картины мира, теоретические схемы всегда связаны с ней. Установление этой связи является одним из обязательных условий построения теории.
Благодаря связи с картиной мира происходит объективизация теоретических схем. Составляющая их система абстрактных объектов предстаёт как выражение сущности изучаемых процессов «в чистом виде». Важность этой процедуры можно проиллюстрировать на конкретном примере. Когда в механике Герца вводится теоретическая схема механических процессов, в рамках которой они изображаются только как изменение во времени конфигурации материальных точек, а сила представлена как вспомогательное понятие, характеризующее тип такой конфигурации, то все это воспринимается вначале как весьма искусственный образ механического движения. Но в механике Герца содержится разъяснение, что все тела природы взаимодействуют через мировой эфир, а передача сил представляет собой изменение пространственных отношений между частицами эфира. В результате теоретическая схема, лежащая в основании механики Герца, предстаёт уже как выражение глубинной сущности природных процессов.
Процедура отображения теоретических схем на картину мира обеспечивает ту разновидность интерпретации уравнений, выражающих теоретические законы, которую в логике называют концептуальной (или семантической) интерпретацией и которая обязательна для построения теории. Таким образом, вне картины мира теория не может быть построена в завершённой форме.
Картины реальности, развиваемые в отдельных научных дисциплинах, не являются изолированными друг от друга. Они взаимодействуют между собой. В этой связи возникает вопрос: существуют ли более широкие горизонты систематизации знаний, формы их систематизации, интегративные по отношению к специальным картинам реальности (дисциплинарным онтологиям)? В методологических исследованиях такие формы уже зафиксированы и описаны. К ним относится общая научная картина мира, которая выступает особой формой теоретического знания. Она интегрирует наиболее важные достижения естественных, гуманитарных и технических наук – это достижения типа представлений о нестационарной Вселенной и Большом взрыве, о кварках и синергетических процессах, о генах, экосистемах и биосфере, об обществе как целостной системе, о формациях и цивилизациях и т. д. Вначале они развиваются как фундаментальные идеи и представления соответствующих дисциплинарных онтологий, а затем включаются в общую научную картину мира.
И если дисциплинарные онтологии (специальные научные картины мира) репрезентируют предметы каждой отдельной науки (физики, биологии, социальных наук и т. д.), то в общей научной картине мира представлены наиболее важные системно-структурные характеристики предметной области научного познания как целого, взятого на определённой стадии его исторического развития.
Революции в отдельных науках (физике, химии, биологии и т. д.), меняя видение предметной области соответствующей науки, постоянно порождают мутации естественно-научной и общенаучной картин мира, приводят к пересмотру ранее сложившихся в науке представлений о действительности. Однако связь между изменениями в картинах реальности и кардинальной перестройкой естественно-научной и общенаучной картин мира не однозначна. Нужно учитывать, что новые картины реальности вначале выдвигаются как гипотезы. Гипотетическая картина проходит этап обоснования и может весьма длительное время сосуществовать рядом с прежней картиной реальности. Чаще всего она утверждается не только в результате продолжительной проверки опытом её принципов, но и благодаря тому, что эти принципы служат базой для новых фундаментальных теорий.
Вхождение новых представлений о мире, выработанных в той или иной отрасли знания, в общенаучную картину мира не исключает, а предполагает конкуренцию различных представлений об исследуемой реальности.
Картина мира строится коррелятивно схеме метода, выражаемого в идеалах и нормах науки. В наибольшей мере это относится к идеалам и нормам объяснения, в соответствии с которыми вводятся онтологические постулаты науки. Выражаемый в них способ объяснения и описания включает в снятом виде все те социальные детерминации, которые определяют возникновение и функционирование соответствующих идеалов и норм научности. Вместе с тем постулаты научной картины мира испытывают и непосредственное влияние мировоззренческих установок, доминирующих в культуре некоторой эпохи.
Возьмём, например, представления об абсолютном пространстве механической картины мира. Они возникали на базе идеи однородности пространства. Напомним, что эта идея одновременно послужила и одной из предпосылок становления идеала экспериментального обоснования научного знания, поскольку позволяла утвердиться принципу воспроизводимости эксперимента. Формирование же этой идеи и её утверждение в науке было исторически связано с преобразованием мировоззренческих смыслов категории пространства на переломе от Средневековья к Новому времени. Перестройка всех этих смыслов, начавшаяся в эпоху Возрождения, была сопряжена с новым пониманием человека, его места в мире и его отношения к природе. Причём модернизация смыслов категории пространства происходила не только в науке, но и в самых различных сферах культуры. В этом отношении показательно, что становление концепции гомогенного, евклидова пространства в физике резонировало с процессами формирования новых идей в изобразительном искусстве эпохи Возрождения, когда живопись стала использовать линейную перспективу евклидова пространства, воспринимаемую как реальную чувственную достоверность природы.
Представления о мире, которые вводятся в картинах исследуемой реальности, всегда испытывают определённое воздействие аналогий и ассоциаций, почерпнутых из различных сфер культурного творчества, включая обыденное сознание и производственный опыт определённой исторической эпохи.
Нетрудно, например, обнаружить, что представления об электрическом флюиде и теплороде, включённые в механическую картину мира в XVIII в., складывались во многом под влиянием предметных образов, почерпнутых из сферы повседневного опыта и производства соответствующей эпохи. Здравому смыслу XVIII столетия легче было согласиться с существованием немеханических сил, представляя их по образу и подобию механических, например, представляя поток тепла как поток невесомой жидкости – теплорода, падающего наподобие водяной струи с одного уровня на другой и производящего за счёт этого работу так же, как совершает эту работу вода в гидравлических устройствах. Но вместе с тем введение в механическую картину мира представлений о различных субстанциях – носителях сил – содержало и момент объективного знания. Представление о качественно различных типах сил было первым шагом на пути к признанию несводимости всех видов взаимодействия к механическому. Оно способствовало формированию особых, отличных от механического, представлений о структуре каждого из таких видов взаимодействия.
Формирование картин исследуемой реальности в каждой отрасли науки всегда протекает не только как процесс внутринаучного характера, но и как взаимодействие науки с другими областями культуры.
Вместе с тем, поскольку картина реальности должна выразить главные сущностные характеристики исследуемой предметной области, постольку она складывается и развивается под непосредственным воздействием фактов и специальных теоретических моделей науки, объясняющих факты. Благодаря этому в ней постоянно возникают новые элементы содержания, которые могут потребовать даже коренного пересмотра ранее принятых онтологических принципов. Развитая наука даёт множество свидетельств именно таких, преимущественно внутринаучных, импульсов эволюции картины мира. Представления об античастицах, кварках, нестационарной Вселенной и т. п. выступили результатом совершенно неожиданных интерпретаций математических выводов физических теорий и затем включались в качестве фундаментальных представлений в научную картину мира.

НАУЧНАЯ КАРТИНА МИРА – целостный образ предмета научного исследования в его главных системно-структурных характеристиках, формируемый посредством фундаментальных понятий, представлений и принципов науки на каждом этапе ее исторического развития.

Различают основные разновидности (формы) научной картины мира: 1) общенаучную как обобщенное представление о Вселенной, живой природе, обществе и человеке, формируемое на основе синтеза знаний, полученных в различных научных дисциплинах; 2) социальную и естественнонаучную картины мира как представления об обществе и природе, обобщающие достижения соответственно социально-гуманитарных и естественных наук; 3) специальные научные картины мира (дисциплинарные онтологии) – представления о предметах отдельных наук (физическая, химическая, биологическая и т.п. картины мира). В последнем случае термин «мир» применяется в специфическом смысле, обозначая не мир в целом, а предметную область отдельной науки (физический мир, биологический мир, мир химических процессов). Чтобы избежать терминологических проблем, для обозначения дисциплинарных онтологии применяют также термин «картина исследуемой реальности». Наиболее изученным ее образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания. Обобщенный системно-структурный образ предмета исследования вводится в специальной научной картине мира посредством представлений 1) о фундаментальных объектах, из которых полагаются построенными все другие объекты, изучаемые соответствующей наукой; 2) о типологии изучаемых объектов; 3) об общих особенностях их взаимодействия; 4) о пространственно-временной структуре реальности. Все эти представления могут быть описаны в системе онтологических принципов, которые выступают основанием научных теорий соответствующей дисциплины. Напр., принципы – мир состоит из неделимых корпускул; их взаимодействие строго детерминировано и осуществляется как мгновенная передача сил по прямой; корпускулы и образованные из них тела перемещаются в абсолютном пространстве с течением абсолютного времени – описывают картину физического мира, сложившуюся во 2-й пол. 17 в. и получившую впоследствии название механической картины мира.

Переход от механической к электродинамической (в кон. 19 в.), а затем кквантово-релятивистской картине физической реальности (1-я пол. 20 в.) сопровождался изменением системы онтологических принципов физики. Наиболее радикальным он был в период становления квантово-релятивистской физики (пересмотр принципов неделимости атомов, существования абсолютного пространства – времени, лапласовский детерминации физических процессов).

По аналогии с физической картиной мира выделяют картины исследуемой реальности в других науках (химии, астрономии, биологии и т.д.). Среди них также существуют исторически сменяющие друг друга типы картин мира. Напр., в истории биологии – переход от додарвиновских представлений о живом к картине биологического мира, предложенной Дарвином, к последующему включению в картину живой природы представлений о генах как носителях наследственности, к современным представлениям об уровнях системной организации живого – популяции, биогеоценозе, биосфере и их эволюции.

Каждая из конкретно-исторических форм специальной научной картины мира может реализовываться в ряде модификаций. Среди них существуют линии преемственности (напр., развитие ньютоновских представлений о физическом мире Эйлером, развитие электродинамической картины мира Фарадеем, Максвеллом, Герцем, Лоренцем, каждый из которых вводил в эту картину новые элементы). Но возможны ситуации, когда один и тот же тип картины мира реализуется в форме конкурирующих и альтернативных друг другу представлений об исследуемой реальности (напр., борьба ньютоновской и декартовской концепций природы как альтернативных вариантов механической картины мира; конкуренция двух основных направлений в развитии электродинамической картины мира – программы Ампера–Вебера, с одной стороны, и программы Фарадея–Максвелла – с другой).

Картина мира является особым типом теоретического знания. Ее можно рассматривать в качестве некоторой теоретической модели исследуемой реальности, отличной от моделей (теоретических схем), лежащих в основании конкретных теорий. Во-первых, они различаются по степени общности. На одну и ту же картину мира может опираться множество теорий, в т.ч. и фундаментальных. Напр., с механической картиной мира были связаны механика Ньютона–Эйлера, термодинамика и электродинамика Ампера–Вебера. С электродинамической картиной мира связаны не только основания максвелловской электродинамики, но и основания механики Герца. Во-вторых, специальную картину мира можно отличить от теоретических схем, анализируя образующие их абстракции (идеальные объекты). Так, в механической картине мира процессы природы характеризовались посредством абстракций – «неделимая корпускула», «тело», «взаимодействие тел, передающееся мгновенно по прямой и меняющее состояние движения тел», «абсолютное пространство» и «абсолютное время». Что же касается теоретической схемы, лежащей в основании ньютоновской механики (взятой в ее эйлеровском изложении), то в ней сущность механических процессов характеризуется посредством иных абстракций – «материальная точка», «сила», «инерциальная пространственно-временная система отсчета».

Идеальные объекты, образующие картину мира, в отличие от идеализации конкретных теоретических моделей всегда имеют онтологический статус. Любой физик понимает, что «материальная точка» не существует в самой природе, ибо в природе нет тел, лишенных размеров. Но последователь Ньютона, принявший механическую картину мира, считал неделимые атомы реально существующими «первокирпичиками» материи. Он отождествлял с природой упрощающие ее и схематизирующие абстракции, в системе которых создается физическая картина мира. В каких именно признаках эти абстракции не соответствуют реальности – это исследователь выясняет чаще всего лишь тогда, когда его наука вступает в полосу ломки старой картины мира и замены ее новой. Будучи отличными от картины мира, теоретические схемы, составляющие ядро теории, всегда связаны с ней. Установление этой связи является одним из обязательных условий построения теории. Процедура отображения теоретических моделей (схем) на картину мира обеспечивает ту разновидность интерпретации уравнений, выражающих теоретические законы, которую в логике называют концептуальной (или семантической) интерпретацией и которая обязательна для построения теории. Вне картины мира теория не может быть построена в завершенной форме.

Научные картины мира выполняют три основные взаимосвязанные функции в процессе исследования: 1) систематизируют научные знания, объединяя их в сложные целостности; 2) выступают в качестве исследовательских программ, определяющих стратегию научного познания; 3) обеспечивают объективацию научных знаний, их отнесение к исследуемому объекту и их включение в культуру.

Специальная научная картина мира интегрирует знания в рамках отдельных научных дисциплин. Естественнонаучная и социальная картины мира, а затем общенаучная картина мира задают более широкие горизонты систематизации знаний. Они интегрируют достижения различных дисциплин, выделяя в дисциплинарных онтологиях устойчивое эмпирически и теоретически обоснованное содержание. Напр., представления современной общенаучной картины мира о нестационарной Вселенной и Большом взрыве, о кварках и синергетических процессах, о генах, экосистемах и биосфере, об обществе как целостной системе, о формациях и цивилизациях и т.п. были развиты в рамках соответствующих дисциплинарных онтологии физики, биологии, социальных наук и затем включены в общенаучную картину мира.

Осуществляя систематизирующую функцию, научные картины мира вместе с тем выполняют роль исследовательских программ. Специальные научные картины мира задают стратегию эмпирических и теоретических исследований в рамках соответствующих областей науки. По отношению к эмпирическому исследованию целенаправляющая роль специальных картин мира наиболее отчетливо проявляется тогда, когда наука начинает изучать объекты, для которых еще не создано теории и которые исследуются эмпирическими методами (типичными примерами служит роль электродинамической картины мира в экспериментальном изучении катодных и рентгеновских лучей). Представления об исследуемой реальности, вводимые в картине мира, обеспечивают выдвижение гипотез о природе явлений, обнаруженных в опыте. Соответственно этим гипотезам формулируются экспериментальные задачи и вырабатываются планы экспериментов, посредством которых обнаруживаются все новые характеристики изучаемых в опыте объектов.

В теоретических исследованиях роль специальной научной картины мира как исследовательской программы проявляется в том, что она определяет круг допустимых задач и постановку проблем на начальном этапе теоретического поиска, а также выбор теоретических средств их решения. Напр., в период построения обобщающих теорий электромагнетизма соперничали две физические картины мира и соответственно две исследовательские программы: Ампера–Вебера, с одной стороны, и Фарадея–Максвелла, с другой. Они ставили разные задачи и определяли разные средства построения обобщающей теории электромагнетизма. Программа Ампера–Вебера исходила из принципа дальнодействия и ориентировала на применение математических средств механики точек, программа Фарадея–Максвелла опиралась на принцип близкодействия и заимствовала математические структуры из механики сплошных сред.

В междисциплинарных взаимодействиях, основанных на переносах представлений из одной области знаний в другую, роль исследовательской программы выполняет общенаучная картина мира. Она выявляет сходные черты дисциплинарных онтологий, тем самым формирует основания для трансляции идей, понятий и методов из одной науки в другую. Обменные процессы между квантовой физикой и химией, биологией и кибернетикой, породившие целый ряд открытий 20 в., целенаправлялись и регулировались общенаучной картиной мира.

Факты и теории, созданные при целенаправляющем влиянии специальной научной картины мира, вновь соотносятся с ней, что приводит к двум вариантам ее изменений. Если представления картины мира выражают существенные характеристики исследуемых объектов, происходит уточнение и конкретизация этих представлений. Но если исследование наталкивается на принципиально новые типы объектов, происходит радикальная перестройка картины мира. Такая перестройка выступает необходимым компонентом научных революций. Она предполагает активное использование философских идей и обоснование новых представлений накопленным эмпирическим и теоретическим материалом. Первоначально новая картина исследуемой реальности выдвигается в качестве гипотезы. Ее эмпирическое и теоретическое обоснование может занять длительный период, когда она конкурирует в качестве новой исследовательской программы с ранее принятой специальной научной картиной мира. Утверждение новых представлений о реальности в качестве дисциплинарной онтологии обеспечивается не только тем, что они подтверждаются опытом и служат базисом новых фундаментальных теорий, но и их философско-мировоззренческим обоснованием (см. Философские основания науки ).

Представления о мире, которые вводятся в картинах исследуемой реальности, всегда испытывают определенное воздействие аналогий и ассоциаций, почерпнутых из различных сфер культурного творчества, включая обыденное сознание и производственный опыт определенной исторической эпохи. Напр., представления об электрическом флюиде и теплороде, включенные в механическую картину мира в 18 в., складывались во многом под влиянием предметных образов, почерпнутых из сферы повседневного опыта и техники соответствующей эпохи. Здравому смыслу 18 в. легче было согласиться с существованием немеханических сил, представляя их по образу и подобию механических, напр. представляя поток тепла как поток невесомой жидкости – теплорода, падающего наподобие водной струи с одного уровня на другой и производящего за счет этого работу так же, как совершает эту работу вода в гидравлических устройствах. Но вместе с тем введение в механическую картину мира представлений о различных субстанциях – носителях сил – содержало и момент объективного знания. Представление о качественно различных типах сил было первым шагом на пути к признанию несводимости всех видов взаимодействия к механическому. Оно способствовало формированию особых, отличных от механических, представлений о структуре каждого из таких видов взаимодействий.

Онтологический статус научных картин мира выступает необходимым условием объективации конкретных эмпирических и теоретических знаний научной дисциплины и их включения в культуру.

Через отнесение к научной картине мира специальные достижения науки обретают общекультурный смысл и мировоззренческое значение. Напр., основная физическая идея обшей теории относительности, взятая в ее специальной теоретической форме (компоненты фундаментального метрического тензора, определяющего метрику четырехмерного пространства-времени, вместе с тем выступают как потенциалы гравитационного поля), малопонятна тем, кто не занимается теоретической физикой. Но при формулировке этой идеи в языке картины мира (характер геометрии пространства-времени взаимно определен характером поля тяготения) придает ей понятный для неспециалистов статус научной истины, имеющей мировоззренческий смысл. Эта истина видоизменяет представления об однородном евклидовом пространстве и квазиевклидовом времени, которые через систему обучения и воспитания со времен Галилея и Ньютона превратились в мировоззренческий постулат обыденного сознания. Так обстоит дело с многими открытиями науки, которые включались в научную картину мира и через нее влияют на мировоззренческие ориентиры человеческой жизнедеятельности. Историческое развитие научной картины мира выражается не только в изменении ее содержания. Историчны сами ее формы. В 17 в., в эпоху возникновения естествознания, механическая картина мира была одновременно и физической, и естественнонаучной, и общенаучной картиной мира. С появлением дисциплинарно организованной науки (кон. 18 в. – 1-я пол. 19 в.) возникает спектр специально-научных картин мира. Они становятся особыми, автономными формами знания, организующими в систему наблюдения факты и теории каждой научной дисциплины. Возникают проблемы построения общенаучной картины мира, синтезирующей достижения отдельных наук. Единство научного знания становится ключевой философской проблемой науки 19 – 1-й пол. 20 в. Усиление междисциплинарных взаимодействий в науке 20 в. приводит к уменьшению уровня автономности специальных научных картин мира. Они интегрируются в особые блоки естественнонаучной и социальной картин мира, базисные представления которых включаются в общенаучную картину мира. Во 2-й пол. 20 в. общенаучная картина мира начинает развиваться на базе идей универсального (глобального) эволюционизма, соединяющего принципы эволюции и системного подхода. Выявляются генетические связи между неорганическим миром, живой природой и обществом, в результате устраняется резкое противопоставление естественнонаучной и социальной научной картин мира. Соответственно усиливаются интегративные связи дисциплинарных онтологий, которые все более выступают фрагментами или аспектами единой общенаучной картины мира.

Литература:

1. Алексеев И.С. Единство физической картины Мира как методологический принцип. – В кн.: Методологические принципы физики. М., 1975;

2. Вернадский В.И. Размышления натуралиста, кн. 1, 1975, кн. 2, 1977;

3. Дышлевый П.С. Естественнонаучная картина мира как форма синтеза научного знания. – В кн.: Синтез современного научного знания. М., 1973;

4. Мостепаненко М.В. Философия и физическая теория. Л., 1969;

5. Научная картина мира: логико-гносеологический аспект. К., 1983;

6. Планк М. Статьи и речи. – В кн.: Планк М. Избр. науч. труды. М., 1975;

7. Пригожинй И. , Стенгерс И. Порядок из хаоса. М., 1986;

8. Природа научного познания. Минск, 1979;

9. Стенин В.С. Теоретическое знание. М., 2000;

10. Степин В.С. , Кузнецова Л.Ф. Научная картина мира в культуре техногенной цивилизации. М., 1994;

11. Холтон Дж. Что такое «антинаука». – «ВФ», 1992, № 2;

12. Эйнштейн А. Собр. науч. трудов, т. 4. М., 1967.

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели