Какими свойствами обладает излучение лазера. Принцип действия лазера: особенности лазерного излучения

Какими свойствами обладает излучение лазера. Принцип действия лазера: особенности лазерного излучения

Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.

Что такое лазер?

Слово «лазер» (англ. LASER, Light Amplification by Stimulated Emission of Radiation) является аббревиатурой, которая расшифровывается как «усиление света индуцированным излучением». Частота излучения, генерируемого лазером, находится в пределах или вблизи видимой части электромагнитного спектра. Энергия усиливается до состояния чрезвычайно высокой интенсивности с помощью процесса, который носит название «излучение лазерное индуцированное».

Термин «радиация» часто понимается неправильно, потому что его также используют при описании В данном контексте оно означает передачу энергии. Энергия переносится из одного места в другое посредством проводимости, конвекции и излучения.

Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).

Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.

Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.

Электромагнитный спектр

Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.

Наибольшую частоту имеют и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.

воздействие на человека

Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.

Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.

Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.

Опасность для глаз

Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях - помутнением передней камеры.

Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение - инфракрасное и ультрафиолетовое.

Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.

Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.

Рентгеновские лучи

Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого - мощные с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на в том числе для обеспечения надлежащего экранирования.

Классификация

В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.

Безопасные устройства

Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.

Условно безопасные устройства

Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.

Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.

Опасные лазеры

К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1-5 мВт, некоторые лазерные указатели и строительные уровни.

Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.

Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.

Лазерное излучение: защита

Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.

  • Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
  • Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
  • Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
  • Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
  • Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.

Защитные очки

При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.

Факторы, которые следует учитывать при выборе защитных очков:

  • длина волны или область спектра излучения;
  • оптическая плотность при определенной длине волны;
  • максимальная освещённость (Вт/см 2) или мощность пучка (Вт);
  • тип лазерной системы;
  • режим мощности - импульсное лазерное излучение или непрерывный режим;
  • возможности отражения - зеркального и диффузного;
  • поле зрения;
  • наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
  • комфорт;
  • наличие вентиляционных отверстий, предотвращающих запотевание;
  • влияние на цветовое зрение;
  • ударопрочность;
  • возможность выполнения необходимых задач.

Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.

Когда ученые узнали, каковы свойства лазерного излучения, общественность получила широкие возможности интерферометрии. В настоящее время научное сообщество имеет достаточно точные методы определения количественных оценок перемещений, длин. Первое время интерферометры применялись довольно ограниченно, так как источники световой волны не были в необходимой степени когерентными, яркими, поэтому картина, доступная человеку, была корректной лишь в случае, когда измерительное плечо составляло 50 см и менее. Многое изменилось, когда появилась возможность применения более высокоточного лазерного излучения.

Гемостатика

Этим термином принято обозначать кратко свойство лазерного излучения, выраженное через запаивание, сварку. Обусловлен процесс некрозом, связанным с обработкой температурой. Коагуляционный контролируемый некроз, спровоцированный изменением уровня нагрева, сопровождается формированием краевой пленки из элементов клеток, тканей. Это соединяет между собой несколько слоев органа единым уровнем.

Работа с лазером - это всегда взаимодействие с очень высокими температурами. За счет такой особенности жидкость, находящаяся в норме внутри клеток и между тканями, практически мгновенно испаряется, а сухие компоненты сгорают. Дистрофия определяется тем, какой именно тип лазерного излучения (свойства немного отличаются) применен в конкретной установке. Многое также зависит и от вида обрабатываемых органических тканей, от продолжительности контакта. Если лазер перемещать, это провоцирует испарение, по итогам которого получается линейный разрез.

Важные качества

Рассматривая, какими свойствами обладает лазерное излучение, важно упомянуть монохроматический спектр, высокий уровень когерентности, низкую расходимость, повышенную плотность спектра. Суммарно это позволяет сконструировать на базе лазера высокоточные приборы, надежные и применимые в самых разных условиях климата, геологических, гидрологических факторов.

В последние годы конструируются высокоточные приборы с лазерами для геодезистов. Они основаны на уже известных человечеству свойствах лазерного излучения. Использование лазеров в подобных установках широко распространено не только в нашей стране, но и за границей. Как видно из практики, для укладчиков труб, машин землеройного класса лазерные системы незаменимы как метод определения направления движения. Важны они и при создании дорог (ж/д, авто), многих других работах.

Это важно

Применение лазер нашел себе при формировании траншей. При помощи специальной установки создается лазерный луч, определяющий трассу. Ориентируясь на него, управляющий экскаватором человек может стабильно трудиться. Эксплуатация подобных современных приборов - гарант качественного исполнения всех этапов работ и создания траншей точно такими, какие заданы проектной документацией.

Лазер незаменим!

Если в школьном или университетском курсе в тестовой работе обучающемуся дают задание «Назовите характерные для лазерного излучения свойства», первыми в голову приходят когерентность, яркость. Если сравнить лазер и плазму, первый превышает по параметрам яркости в разы, применим для создания серийных вспышек, причем частота может достигать 1010 Гц. Один импульс может длиться (в пикосекундах) несколько десятков. При этом расходимость низкая, можно регулировать частоту. Указанные качества оказались применимы в установках, позволяющих изучать протекающие с очень высокой скоростью процессы.

В силу описанных особенностей лазеры стали незаменимыми в аналитике с применением технологии термооптической спектроскопии.

Тонкие структуры

Выявленные учеными (перечисленные выше) основные свойства лазерного излучения позволили применять эту технологию при разработке современного оружия и конструировании машин для нарезки различных материалов. Но только лишь этим спектр возможностей не ограничен. Применяя особенно точные и технологичные методы построения рабочей конструкции, на базе лазерного излучения можно создать систему изучения молекул, их структуры, свойств. Получая новейшую информацию таким образом, ученые формируют фундамент для создания новых типов лазеров. Как видно из наиболее оптимистичных прогнозов, уже в ближайшем будущем именно посредством лазерного излучения удастся раскрыть природу фотосинтеза, а значит, научные сотрудники получат все ключи к познанию сути жизни на планете и механизмов ее формирования.

Познание мира: тайны и открытия

Считается, что все основные свойства лазерного излучения в настоящее время уже исследованы. Ученые знают базовые принципы стимулированного излучения и сумели применить их на практике. Особенно важными считаются монохроматический спектр излучения, его интенсивность, импульсная длина, четкое направление. За счет таких особенностей луч лазера вступает в нетипичное взаимодействие с веществом.

Как дополнительно обращают внимание физики, указанные свойства лазерного излучения нельзя назвать независимыми характеристиками, описывающими все без исключения разновидности упомянутого явления. Между ними есть определенные связи. В частности, когерентность определяется направленностью излучения, а импульсная длина напрямую связана с монохроматическим спектром луча. Длительность, направление определяют интенсивность излучения.

Эффект Рамана

Это явление - одно из важных для оценки и понимания, применения свойств лазерного излучения. Термином принято обозначать такое состояние, для инициации которого необходима установка большой мощности. Под ее влиянием происходит рассеивание, когда наблюдается частотное смещение излучения. При выявлении специфики спектрального состава, оценке мощности можно заметить, что частотность корректируется в соответствии с довольно сложной закономерностью. Если стимулировать эффект Рамана искусственным путем, можно создать метод корректирования для оптики когерентных сигналов.

Это любопытно

Как показали исследования свойств лазерного излучения и процессов, которые оно инициирует в веществе, картина во многом сходна с наблюдаемой в структуре ферромагнетиков, сверхпроводников. Если добиться повышенного уровня накачки, используя резонатор низкой степени, лучи, испускаемые лазером, становятся хаотичными. При этом сам хаос - это такое световое состояние, которое совершенно не похоже на хаос, создаваемый излучающими тепло объектами.

Область использования расширяется

Так как лазерное излучение обладает следующими свойствами: монохроматический спектр, строго определенная направленность, следовательно, его можно применять в качестве светового источника. В настоящее время активно ведутся разработки в сфере эксплуатации этой технологии для передачи сигналов. Известно, что свет и вещество могут взаимодействовать таким образом, что процесс применим на практике в различных установках, но корректные подходы еще только предстоит разработать. Есть и иные, высокотехнологичные, сложные, наукоемкие актуальные задачи, для решения которых рано или поздно удастся применить высокомощное лазерное излучение.

Свойства описываемого явления позволяют конструировать спектральные приборы. Это в некоторой степени объясняется и низкой расходимостью луча, сопровождающейся повышенной плотностью спектра.

Возможностей много

Как удалось выяснить ученым, для создания максимально эффективных и широко применяемых установок разумно применять такие лазеры, для которых частоту можно настраивать в процессе работы. Они актуальны в первую очередь для спектральных приборов с повышенными показателями разрешения. В таких установках можно добиться корректного результата исследования, не прибегая к диспергирующему элементу.

Системы, основанные на лазере, частота которого корректируется во время работы, в настоящее время нашли себе применение в разных областях и сферах научной деятельности, медицины, промышленности. Во многом предназначение конкретного прибора определяется спецификой лазерного излучения, реализованного в нем. Линия генерации определяет спектральное разрешение, полуширину функциональности аппарата. Форма зависит от заданного интенсивного спектрального распределения.

Технические особенности

Обычно лазер конструируется как резонатор, где создается специфическая среда. Ее ключевая особенность - негативное по знаку поглощение электромагнитной энергии. Такой резонатор позволяет уменьшить потери радиации в специализированной среде. Обусловлено это созданием цикла для электромагнитной энергии. При этом частоты берутся лишь узкой полосы. Такой подход позволяет восполнять энергетические потери, спровоцированные тем фактом, что излучение вынужденное.

Чтобы генерировать электромагнитную энергию, имеющую характерные особенности лазера, не нужно использовать резонатор. Результат все равно будет когерентным, отличающимся высокой коллимацией и узким спектром.

О голографии

Чтобы реализовать подобные процессы, следует иметь в своем распоряжении источник, генерирующий излучение с высоким уровнем когерентности. В настоящее время это именно лазеры. Как только удалось впервые открыть такое излучение, практически сразу физики поняли, что свойства его можно применять для реализации голографии. Это стало толчком для широкого практического применения перспективной технологии.

О применении

Едва только лазеры были изобретены, как научное сообщество, а следом и весь мир, оценили их как уникальное решение любой проблемы. Это обусловлено свойствами излучения. В настоящее время лазеры эксплуатируются в технике, науке, при решении многочисленных бытовых задач: от воспроизведения музыки до считывания кодов при продаже товара. Промышленность применяет такие системы для спайки, нарезки, сварки. Благодаря возможности достижения очень высокой температуры можно сваривать такие материалы, которые не поддаются классическим методикам соединения. Это сделало возможным, к примеру, создавать цельные объекты из керамических, металлических частей.

Лазерный луч при использовании современной технологии можно сфокусировать так, что диаметр полученной точки будет оцениваться в микрон. Это позволяет применять технологию в микроскопических электронных приборах. В настоящее время такая возможность известна под термином «скрайбирование».

А где еще?

Довольно активно лазеры, благодаря своим уникальным качествам, используются в промышленности для создания покрытий. Это помогает повысить стойкость к износу разнообразных изделий, материалов. Не менее актуальна и лазерная маркировка, гравировка - при помощи современной установки таким образом можно обработать практически любую поверхность. Во многом это связано с отсутствием механического прямого влияния, то есть рабочий процесс провоцирует меньшие деформации, нежели при любом другом распространенном методе. Современный уровень развития техники и науки таков, что можно полностью автоматизировать все этапы работы с лазером, сохраняя при этом высокий производительный уровень и повышенную точность исполнения задач.

Технологии и техника

В последнее время довольно широко применяются лазерные установки с красителями. Они производят монохроматическое излучение с разными длинами волн, импульсы оцениваются в 10-16 с. Мощность таких установок очень большая, а генерируемые импульсы оцениваются как гигантские. Такая возможность особенно значима для спектроскопии и исследований в оптике относительно не обладающих линейностью эффектов.

Применение лазера стало базовой технологией для точной оценки расстояния между нашей планетой и ближайшим небесным телом - Луной. Точность измерения - до сантиметров. Локация с применением лазера позволяет увеличивать астрономические знания, уточнять навигацию в космосе, увеличивать базу данных об особенностях атмосферы и о том, из чего состоят планеты нашей системы.

Химия не осталась в стороне

Современные лазерные технологии используются для инициации химических реакций и исследования того, как они протекают. При применении подобных возможностей можно выявить предельно точно локализацию, дозу, стерильность, обеспечить необходимые энергетические показатели на моменте старта системы.

Ученые активно работают над формированием систем лазерного охлаждения и разрабатывают возможности применения такого излучения для контроля термоядерных реакций.

Принцип действия и основные свойства лазера.

Квантовую электронику можно определить как раздел электроники, в котором фундаментальную роль играют явления квантового характера. Настоящая книга посвящена рассмотрению частного аспекта квантовой электроники, а именно описанию физических принципов действия лазеров и их характеристик. Прежде чем заняться детальным обсуждением предмета, целесообразно уделить некоторое внимание элементарному рассмотрению идей, на которых основаны лазеры.

В лазере используются три фундаментальных явления, происходящих при взаимодействии электромагнитных волн с веществом, а именно процессы спонтанного и вынужденного излучения и процесс поглощения.

Принцип работы лазера

Рассмотрим в какой-либо среде два произвольных энергетических уровня 1 и 2 с соответствующими населенностями N 1 и N 2 . Пусть в этой среде в направлении оси z распространяется плоская волна с интенсивностью, соответствующей плотности потока фотонов F. Тогда в соответствии с выражениями (1.3) - (1.6) изменение плотности потока dF, обусловленное как процессами вынужденного излучения, так и процессами поглощения, в слое dz (заштрихованная область на рис. 1.2) определяется уравнением

dF=σF(N 2 -. N 1) (1.7)

Из уравнения (1.7) следует, что в случае N 2 > N 1 среда ведет себя как усиливающая (т. е. dF/dz > 0), а в случае N 2 <. N 1 - как поглощающая. Известно, что при термодинамическом равновесии населенности энергетических уровней описываются статистикой Больцмана. Так, если N 2 e и N 1 e - населенности двух уровней при термодинамическом равновесии, то мы имеем

N 2 e /N 1 e = exp[-(E 2 -E 1)/kT], (1.8)

где k - постоянная Больцмана, а T - абсолютная температура среды. Таким образом, мы видим, что в случае термодинамического равновесия N 2 <. N 1 . В соответствии с (1.7) среда поглощает излучение на частоте ν, что обычно и происходит. Однако если удастся достигнуть неравновесного состояния, для которого N 2 >. N 1 , то среда будет действовать как усилитель. В этом случае будем говорить, что в среде существует инверсия населенностей, имея в виду, что разность населенностей (N 2 -. N 1 > 0) противоположна по знаку той, которая существует в обычных условиях (N 2 -. N 1 < 0). Среду, в которой осуществлена инверсия населенностей, будем называть активной средой.

Если частота перехода ν = (Е 2 - Е 1)/h попадает в СВЧ-диапазон, то соответствующий усилитель называется мазером. Слово мазер (англ. maser) образовано из начальных букв слов следующей фразы: microwave amplification by stimulated emission of radiation - усиление микроволн вынужденным испусканием излучения. Если же частота перехода ν соответствует оптическому диапазону, то усилитель называется лазером. Слово лазер (англ. laser) образовано аналогично, только начальная буква «м», происходящая от первой буквы в слове microwave, заменена буквой «л», происходящей от слова light (свет).

Для того чтобы усилитель превратить в генератор, необходимо ввести подходящую положительную обратную связь. В СВЧ-диапазоне это достигается тем, что активную среду помещают в объемный резонатор, имеющий резонанс при частоте ν. В лазере обратную связь обычно получают размещением активной среды между двумя зеркалами с высоким коэффициентом отражения (например, между плоскопараллельными зеркалами, как показано на рис. 1.3. Такая система зеркал обычно именуется резонатором Фабри-Перо оптическим резонатором или открытым резонатором). В этом случае плоская электромагнитная волна, распространяющаяся в направлении, перпендикулярном зеркалам, будет поочередно отражаться от них, усиливаясь при каждом прохождении через активную среду. Если одно из двух зеркал сделано частично прозрачным, то на выходе системы можно выделить пучок полезного излучения Однако как в мазерах, так и в лазерах генерация возможна лишь при выполнении некоторого порогового условия. Например, в лазере генерация начинается тогда, когда усиление активной среды компенсирует потери в нем (скажем, потери, обусловленные частичным выходом излучения из резонатора через зеркало). В соответствии с выражением (1.7) усиление излучения за один проход в активной среде (т. е. отношение выходной и входной плотностей потока фотонов) равно exp[σ(N 2 - N 1)∙l], где l- длина активной среды. Если потери в резонаторе определяются только пропусканием зеркал, то порог генерации будет достигнут при выполнении условия

R 1 R 2 (2σ(N 2 - N 1)∙l) >1 (1.9)

где R 1 и R 2 - коэффициенты отражения зеркал по интенсивности. Это условие показывает, что порог достигается тогда, когда инверсия населенностей приближается к некоторому критическому значению, называемому критической инверсией и определяемому соотношением

(N 2 - N 1) кр =-ln(R 1 R 2)/2σl (1.10)

Как только достигнута критическая инверсия, генерация разовьется из спонтанного излучения. Действительно, фотоны, которые спонтанно испускаются вдоль оси резонатора, будут усиливаться. Этот механизм и лежит в основе лазерного генератора, называемого обычно просто лазером. Однако теперь слово лазер широко применяется к любому устройству, испускающему вынужденное излучение - будь то в дальнем или ближнем ИК-, УФ- и даже в рентгеновском диапазонах. В таких случаях мы будем говорить соответственно об инфракрасных, ультрафиолетовых и рентгеновских лазерах. Заметим также, что названия твердотельный, жидкостный и газовый лазер определяются агрегатным состоянием активной среды.

Схемы накачки

Рассмотрим задачу о том, каким образом в данной среде можно получить инверсию населенностей. На первый взгляд может показаться, что инверсию можно было бы создать при взаимодействии среды с достаточно сильной электромагнитной волной частоты v, определяемой выражением (1.1). Поскольку при термодинамическом равновесии уровень 1 заселен больше, чем уровень 2, поглощение преобладает над вынужденным излучением, т. е. под действием падающей волны происходит больше переходов 1 - 2, чем переходов 2-1, и можно надеяться осуществить таким путем инверсию населенностей. Однако нетрудно заметить, что такой механизм работать не будет (по крайней мере в стационарных условиях). Когда наступят условия, при которых населенности уровней окажутся одинаковыми (N 2 =N 1), процессы вынужденного излучения и поглощения начнут компенсировать друг друга и в соответствии с (1.7) среда станет прозрачной. В такой ситуации обычно говорят о двухуровневом насыщении.

Рис. 1.4. Трехуровневая (а) и четырехуровневая (б) схемы лазера.

Таким образом, используя только два уровня, невозможно получить инверсию населенностей. Естественно, возникает вопрос: можно ли это осуществить с использованием более чем двух уровней из неограниченного набора состояний данной атомной системы? Мы увидим, что в этом случае ответ будет утвердительным и можно будет соответственно говорить о трех и четырехуровневых лазерах в зависимости от числа рабочих уровней (рис. 1.4). В трехуровневом лазере (рис. 1.4, а) атомы каким-либо способом переводятся с основного уровня 1 на уровень 3. Если выбрана среда, в которой атом, оказавшийся в возбужденном состоянии на уровне 3, быстро переходит на уровень 2, то в такой среде можно получить инверсию населенностей между уровнями 2 и 1. В четырехуровневом лазере (рис. 1.4,6) атомы также переводятся с основного уровня (для удобства будем называть его нулевым) на уровень 3. Если после этого атомы быстро переходят на уровень 2, то между уровнями 2 и 1 может быть получена инверсия населенностей. Когда в таком четырехуровневом лазере возникает генерация, атомы в процессе вынужденного излучения переходят с уровня 2 на уровень 1. Поэтому для непрерывной работы четырехуровневого лазера необходимо, чтобы частицы, оказавшиеся на уровне 1, очень быстро переходили на нулевой уровень.

Мы показали, каким образом можно использовать три или четыре энергетических уровня какой-либо системы для получения инверсии населенностей. Будет ли система работать по трех- или четырехуровневой схеме (и будет ли она работать вообще!), зависит от того, насколько выполняются рассмотренные выше условия. Может возникнуть вопрос: зачем использовать четырехуровневую схему, если уже трехуровневая оказывается весьма эффективной для получения инверсии населенностей? Однако дело в том, что в четырехуровневом лазере инверсию получить гораздо легче. Чтобы убедиться в этом, прежде всего заметим, что разности энергий между рабочими уровнями лазера (рис. 1.4) обычно много больше, чем kT, и в соответствии со статистикой Больцмана [см., например, формулу (1.8)] почти все атомы при термодинамическом равновесии находятся в основном состоянии. Если мы теперь обозначим число атомов в единице объема среды как Nt, то в случае трехуровневой системы эти атомы первоначально будут находиться на уровне 1. Переведем теперь атомы с уровня 1 на уровень 3. Тогда с этого уровня атомы будут релаксировать с переходом на более низкий уровень 2. Если такая релаксация происходит достаточно быстро, то уровень 3 остается практически незаселенным. В этом случае, для того чтобы населенности уровней 1 и 2 сделать одинаковыми, на уровень 2 нужно перевести половину атомов Nt, расположенных первоначально на основном уровне. Инверсию населенностей будет создавать любой атом, переведенный на верхний уровень сверх этой половины от общего числа атомов. Однако в четырехуровневом лазере, поскольку уровень 1 первоначально был также незаселенным, любой атом, оказавшийся в возбужденном состоянии, будет давать вклад в инверсию населенностей. Эти простые рассуждения показывают, что по возможности следует искать активные среды, работающие по четырехуровневой схеме. Для получения инверсии населенностей возможно, разумеется, использование большего числа энергетических уровней.

Процесс, под действием которого атомы переводятся с уровня 1 на уровень 3 (в трехуровневой схеме лазера), называется накачкой. Имеется несколько способов, с помощью которых можно реализовать этот процесс на практике, например при помощи некоторых видов ламп, дающих достаточно интенсивную световую волну, или посредством электрического разряда в активной среде.

Свойства лазерных пучков

Лазерное излучение характеризуется чрезвычайно высокой степенью монохроматичности, когерентности, направленности и яркости. К этим свойствам можно добавить генерацию световых импульсов малой длительности. Это свойство, возможно, менее фундаментально, но оно играет очень важную роль. Рассмотрим теперь эти свойства подробнее.

1.4.1. Когерентность .

Для любой электромагнитной волны можно определить два независимых понятия когерентности, а именно пространственную и временную когерентность. Для того чтобы определить пространственную когерентность, рассмотрим две точки P 1 и Р 2 , выбранные с таким условием, что в момент времени t = 0 через них проходит волновой фронт некоторой электромагнитной волны, и пусть E 1 (t) и Е 2 (t) - соответствующие электрические поля в этих точках. Согласно нашему условию, в момент времени t = 0 разность фаз электрических полей в данных точках равна нулю. Если эта разность фаз остается равной нулю в любой момент времени t > 0, то говорят, что между двумя точками имеется полная когерентность. Если такое условие выполняется для любых пар точек волнового фронта, то данная волна характеризуется полной пространственной когерентностью. Практически для любой точки Р 1 , если мы имеем достаточную корреляцию фаз, точка Р 2 должна располагаться внутри некоторой конечной области, включающей точку P 1 . В этом случае говорят, что волна характеризуется частичной пространственной когерентностью, причем для любой точки Р можно соответственно определить область когерентности.

Для того чтобы определить временную когерентность, рассмотрим электрическое поле волны в данной точке Р в моменты времени t и t + τ. Если для данного интервала времени τ разность фаз колебаний поля остается одной и той же в любой момент времени t, то говорят, что существует временная когерентность на интервале времени τ. Если такое условие выполняется для любого значения τ, то волна характеризуется полной временной когерентностью. Если же это имеет место лишь для определенного интервала времени т, такого, что 0 < τ < τ 0 , то волна характеризуется частичной временной когерентностью с временем когерентности τ 0 . Представление о временной когерентности непосредственно связано с монохроматичностью. Электромагнитная волна с временем когерентности, равным τ 0 , имеет спектральную ширину Δν ~ 1/ τ 0 . В случае нестационарного пучка (например, лазерного пучка, полученного в результате модуляции добротности или синхронизации мод) время когерентности не связано обратно пропорциональной зависимостью с шириной полосы генерации и фактически может быть много больше, чем величина 1/ Δν.

Следует заметить, что понятия временной и пространственной когерентности на самом деле не зависят друг от друга. Действительно, можно привести примеры волны, имеющей полную пространственную когерентность, но лишь частичную временную когерентность, и наоборот. Понятия пространственной и временной когерентности дают описание лазерной когерентности только в первом порядке.

Направленность

Это свойство является простым следствием того, что активная среда помещена в резонатор, например плоскопараллельный резонатор, показанный на рис. 1.3. В таком резонаторе могут поддерживаться только такие электромагнитные волны, которые распространяются вдоль оси резонатора или в очень близком к оси направлении. Для более глубокого понимания свойств направленности лазерных пучков (или в общем случае любой электромагнитной волны) удобно рассмотреть отдельно случаи, когда пучок обладает полной пространственной когерентностью и когда он имеет частичную пространственную когерентность.

Рассмотрим вначале пучок с полной пространственной когерентностью. Даже в этом случае пучок с конечной апертурой неизбежно расходится вследствие дифракции. Пусть пучок с постоянной интенсивностью и плоским волновым фронтом падает на экран, в котором имеется отверстие диаметром D. Согласно принципу Гюйгенса волновой фронт в некоторой плоскости Р за экраном может быть получен путем суперпозиции элементарных волн, излученных каждой точкой отверстия. Из-за конечного размера D отверстия пучок имеет конечную расходимость θ. Ее значение можно вычислить с помощью теории дифракции. Для произвольного распределения амплитуды имеем

θ=βλ/D (1.11)

здесь λ - длина волны, a D - диаметр пучка. β- числовой коэффициент порядка единицы, значение которого зависит от формы распределения амплитуд и способа, каким определяются расходимость и диаметр пучка (для пучка с гауссовым распределением интенсивности по сечению, образующегося в одномодовом резонаторе β=0,61). Пучок, расходимость которого описывается выражением (1.11), называется дифракционно-ограниченным. Если волна имеет частичную пространственную когерентность, то ее расходимость будет больше, чем минимальное значение расходимости, обусловленное дифракцией. При соответствующих условиях работы выходной пучок лазера можно сделать дифракционно-ограниченным.

Яркость

Определим яркость какого-либо источника электромагнитных волн как мощность излучения, испускаемого с единицы поверхности источника в единичный телесный угол. Точнее говоря, рассмотрим элемент площади dS поверхности источника в точке О (рис. 1.7). Тогда мощность dP, излучаемая элементом поверхности dS в телесный угол dΩ в направлении 00", может быть записана следующим образом:

dP = BcosθdSdΩ (1.12)

здесь θ - угол между направлением 00" и нормалью к поверхности. Величина В зависит, как правило, от полярных координат θ и φ, т. е. от направления 00" и от положения точки О. Эта величина В на-зывается яркостью источника в точке О в направлении 00".

Яркость лазера даже небольшой мощности (например, несколько милливатт) на несколько порядков превосходит яркость обычных источников. Это свойство в основном является следствием высокой направленности лазерного пучка.

Импульсы малой длительности

При помощи специального метода, называемого синхронизацией мод, можно получить импульсы света, длительность которых приблизительно обратно пропорциональна ширине линии перехода 2-1. Например, в газовых лазерах, ширина линии усиления которых относительно узкая, можно получать импульсы излучения длительностью --¦ 0,1 - 1 нс. Такие импульсы не рассматриваются как очень короткие, поскольку даже некоторые лампы-вспышки способны излучать световые импульсы длительностью менее 1 нс. Однако у твердотельных или жидкостных лазеров ширины линий усиления могут быть в 10 3 - 10 5 раз больше, чем у газовых лазеров, и поэтому генерируемые ими импульсы оказываются значительно короче (от 1 пс до ~5 фс). Получение столь коротких импульсов света привело к новым возможностям в лазерных исследованиях и их применениях.

Свойство генерации коротких импульсов, которое подразумевает концентрацию энергии во времени, в некотором смысле аналогично свойству монохроматичности, означающему концентрацию энергии в узком диапазоне длин волн. Однако генерация коротких импульсов является, по-видимому, менее фундаментальным свойством, чем монохроматичность. В то время как любой лазер можно в принципе изготовить таким, что он будет генерировать достаточно монохроматическое излучение, короткие импульсы можно получать лишь от лазеров с широкой линией излучения, т. е. на практике только от твердотельных или жидкостных лазеров. Газовые же лазеры, обладающие более узкими линиями усиления, лучше всего подходят для генерации высокомонохроматического излучения.

Ширина линии.

Однородное уширение.

Любые процессы, сокращающие время жизни частиц на уровнях, приводят к уширению линий соответствующих переходов. Действительно, определение энергии состояния должно про­водиться за время, не превышающее время жизни в этом состо­янии т. А тогда неточность определения энергии в соответствии с соотношением неопределенностей «энергия - время»

ΔЕΔt ≥ ђ (1.13)

не может быть меньше ђ /τ. Неопределенность энергии состояния приводит к неопределенности частоты перехода, равной 1/2πτ. Постоянная времени τ является мерой времени, необходимого для того, чтобы возбужденная система отдала свою энергию. Значе­ние т определяется скоростями спонтанного излучения и безызлучательных релаксационных переходов.

В отсутствие внешних воздействий спонтанное излучение оп­ределяет время жизни состояния. Поэтому наименьшая возмож­ная, так называемая естественная ширина линии Δν 0 определяет­ся вероятностью спонтанного перехода А:

Δν 0 =А/2π (1.14)

Естественная ширина, как правило, существенна только на очень высоких частотах (А ~ ν 3) и для хорошо разрешенных перехо­дов. Обычно влиянием спонтанного излучения на ширину линии можно пренебречь, так как в реальных условиях релаксационные переходы более эффективно сокращают время жизни.

Как уже говорилось, в системах с дискретными уровнями энергии, кроме индуцированных и спонтанных переходов, суще­ственную роль играют релаксационные безызлучательные перехо­ды. Эти переходы возникают в результате взаимодействий кван­товой частицы с ее окружением. Механизм процессов этих взаи­модействий сильно зависит от вида конкретной системы. Это мо­жет быть взаимодействие между ионом и решеткой кристалла; это могут быть соударения между молекулами газа или жидко­сти и т. д. В конечном счете результатом действия релаксацион­ных процессов является обмен энергией между подсистемой рас­сматриваемых частиц и тепловыми движениями во всей системе в целом, приводящий к термодинамическому равновесию между ними.

Обычно время установления равновесия, время жизни части­цы на уровне, обозначается Т 1 и называется продольным време­нем релаксации. Такая терминология отвечает традиции, устано­вившейся при исследовании явлений ядерного магнитного резо­нанса (ЯМР) и электронного парамагнитного резонанса (ЭПР). Продольная релаксация соответствует движению вектора высоко­частотной намагниченности системы частиц вдоль направления внешнего постоянного магнитного поля. Существует еще попе­речное время релаксации Т 2 , которое соответствует движению вектора намагниченности в плоскости, перпендикулярной направ­лению внешнего постоянного поля.

Время Т 2 является мерой того отрезка време­ни, в течение которого частицы приобретут случайные по отно­шению друг к другу фазы. Любой процесс, вносящий вклад во время релаксации Т 2 т. е. любой процесс потери энергии частицами, приводит к потере фа­зы. Следовательно, Т 2 < Т 1 . Так как время Т 2 является самым коротким временем ре­лаксации, то именно оно и определяет ширину линии перехо­да. Конечность времени жизни частицы в возбужденном энергетическом состоянии ведет к уширению уровней энергии. Излучение с уширенных уровней приобретает спектральную ши­рину. Наиболее общим, фундаментальным механизмом, ограничи­вающим сверху время жизни частицы на возбужденном уровне, является спонтанное излучение, которое должно, таким образом, иметь спектральную ширину, соответствующего скорости актов спонтанного распада.

Квантовая электродинамика позволяет вычислить спектраль­ное распределение квантов спонтанного излучения, исходящих с уровня шириной

ΔЕ = ђ /τ 0 . (1.15)

Контур линии спонтанного излучения оказывается имеющим так называемую лоренцеву форму с шириной

Δν л = ΔЕ / ђ = 1/2πτ 0 (1.16).

Лоренцева форма линии определяется форм-фактором

q(ν) (1.17)

и имеет вид резонансной кривой с максимумом на частоте ν =ν 0 , спадающей до уровня половины пиковой величины при ча­стотах ν=ν 0 ±Δν л /2. Очевидно, что полная ширина кривой на половине максимальной величины составляет Δν л.

Если принимать во внимание возможность спонтанного распа­да не только верхнего из двух рассматриваемых уровней энер­гии, но и нижнего, когда нижний уровень не является основным, то под Δν л, входящей в формулу (1.17), следует понимать вели­чину, определяемую суммой скоростей распада этих уровней

Δν л =1/2πτ 01 +1/2πτ 02 (1.18)

Уширение линии, обусловленное конечностью времени жизни состояний, связанных рассматриваемым переходом, называется однородным. Каждый атом, находящийся в соответствующем со­стоянии, излучает при переходе сверху вниз линию с полной ши­риной Δν л и спектральной формой q(ν). Аналогично каждый атом, находящийся в соответствующем нижнем состоянии, поглощает при переходе снизу вверх излучение в спектре с полной шири­ной Δν л и в соответствии со спектральной зависимостью q(ν). Не­возможно приписать какую-либо определенную спектральную компоненту в спектре q(ν) какому-то определенному атому. При однородном уширении вне зависимости от его природы спект­ральная зависимость q(ν)есть единая спектральная характери­стика как одного атома, так и всей совокупности атомов. Измене­ние этой характеристики, в принципе возможное при том или ином воздействии на ансамбль атомов, происходит одновременно и оди­наковым образом для всех атомов ансамбля.

Примерами однородного уширения являются естественная ши­рина линии и столкновительное уширение в газах.

Неоднородное уширение.

Экспериментально на­блюдаемые спектральные линии могут явиться бесструктурной суперпозицией нескольких спектрально неразрешимых однородно уширенных линий. В этих случаях каждая частица излучает или поглощает не в пределах всей экспериментально наблюдаемой линии. Такая спектральная линия называется неоднородно уши­ренной. Причиной неоднородного уширения может быть любой процесс, приводящий к различию в условиях излучения (погло­щения) для части одинаковых атомов исследуемого ансамбля ча­стиц, или наличие в ансамбле атомов с близкими, но различны­ми спектральными свойствами (сверхтонкая структура того или иного вида), однородно уширенные спектральные линии которых перекрываются лишь частично. Термин «неоднородное уширение» возник в спектроскопии ЯМР, в которой уширение этого типа происходило из-за неоднородности внешнего намагничивающего поля в пределах исследуемого образца.

Классическим примером неоднородного упшрения является доплеровское уширение, характерное для газов при малых дав­лениях и (или) высоких частотах.

Атомы (молекулы, ионы) газа находятся в тепловом движе­нии. Доплер-эффект первого порядка приводит к смещению час­тоты излучения частиц, летящих на наблюдателя со скоростью и, на величину ν 0 u/с, где ν 0 - частота излучения покоящейся части­цы, а с - скорость света. Естественное уширение превращает из­лучение на частоте ν 0 в спектральную линию, но это уширение однородно, и частотный сдвиг ν 0 и/с испытывает вся линия. Так как частицы газа движутся с различными скоростями, то частот­ные сдвиги их излучения различны, а суммарная форма линии газа в целом определяется распределением частиц по скоростям. Последнее верно, строго говоря, если естественная ширина линии много уже доплеровских сдвигов частоты, что, как правило, име­ет место. Тогда, если обозначить через р(и) функцию распреде­ления частиц по скоростям, форм-фактор доплеровской линии q(ν)оказывается связанным с р(и) простым соотношением:

ν = ν 0 (1+u/с) ). (1.20)

Следовательно, и = с(ν - ν 0 )/ ν 0 и du = c dν . При максвелловском распределении частиц по скоростям

(1.21)

где средняя тепловая скорость

Здесь k - постоянная Больцмана, Т - температура газа, т - масса атома (молекулы) газа. Комбинируя (1.20) и (1.21), лег­ко получить q(ν) в виде

, (1.22)

где Δν T =ν 0 u 0 /c - ширина спектральной линии.

Линия, форма которой определяется форм-фактором (1.22), назы­вается доплеровски уширенной линией. Ее форма описывается функцией Гаусса и симметрична относитель­но центральной частоты ν 0 . Спад кривой q(ν) (1.22) при сильной отстройке от ν 0 происходит гораздо более круто, чем в случае лоренцева контура линии (1.17). Около центральной частоты гауссо­ва кривая более полога. Очевидно, что ее ширина определяется параметром Δν T . При удалении от центра кривой на Δν T интен­сивность падает в е раз.


AИГ-Nd-лазер.

Рис. 2.1. Лазерно активные переходы в кристалле АИГ - Nd.

а - схема энергетических уровней; б - зависимость интенсивности люминесценции (в произвольных единицах) от длины волны.

АИГ-Nd-лазер принадлежит к твердотельным лазерам с оптической накачкой. Лазерно активными веществами служат синтетические кристаллы иттрий-алюминиевого граната (Y 3 Al 5 O 12), содержащие ионы Nd 3+ в объемной концентрации, приблизительно равной 1,5 %. Более высокие концентрации невозможны вследствие различия в радиусах ионов Nd 3+ и Y 3+ . АИГ-кристаллы имеют кубическую решетку и поэтому являются оптически изотропными. На рис. 2.1, а показана схема уровней энергии иона Nd 3+ , находящегося в электрическом поле кристалла. Из левой части рис. 2.1, а видно, что схема относится к четырехуровневому лазеру.

Уровни 4 F 3/2 и 4 I 11/2 играют роль верхнего и нижнего лазерных уровней. Выше уровня 4 F 3/2 расположена целая последовательность уровней накачки или полос накачки, с которых возбужденные ионы благодаря взаимодействию с решеткой быстро переходят на верхний лазерный уровень. Нижний лазерный уровень находится выше основного уровня на величину энергии, которая много больше kT. Поэтому при тепловом равновесии этот уровень почти не заселен. Уровни 4 F 3/2 и 4 I 11/2 расщепляются в кристаллическом поле, вследствие чего становятся возможными многие переходы, показанные в правой части рис. 2.1. (Соответствующие расщепления других уровней не показаны.) Наиболее интенсивный переход наблюдается при 1,0641 мкм. Поперечное сечение этого перехода равно 8,8-10~~23 м2, излучательное время жизни верхнего уровня равно 230 мкс и выход люминесценции равен 0,995. При комнатной температуре переходы однородно уширены в результате взаимодействия с колебаниями решетки. Вследствие регулярности структуры кристалла неоднородное уширение пренебрежимо мало, тогда как в системах на неодимовых стеклах оно является доминирующим. Главный лазерный переход имеет ширину линии Δν≈120 ГГц. Для накачки АИГ-Nd-лазера наиболее подходит криптоновая дуговая лампа, поскольку ее полосы излучения хорошо согласуются с уровнями накачки. На рис. 2.2 представлена схема накачки. Накачка осуществляется в двойном эллиптическом отражателе, изготовленном из материала с высоким коэффициентом отражения. Цилиндрический АИГ-стержень находится на общей фокальной линии. Обе криптоновые лампы помещаются на двух других фокальных линиях. Для охлаждения системы стержень и лампы омываются потоком воды. В связи с хорошей теплопроводностью материала и его релаксационными свойствами, а также благодаря эффективному охлаждению АИГ-лазер может работать в режиме высоких мощностей излучения (до 102 Вт) в непрерывном режиме или с высокими частотами следования импульсов (приблизительно до 100 Гц) и с энергиями в импульсе от 0,1 до 1 Дж.

Кристалл АИГ имеет высокий показатель преломления (n(1,064 мкм) = 1,818). Поэтому на концевых поверхностях происходит довольно сильное френелевское отражение лазерного излучения. Его можно существенно уменьшить путем диэлектрического просветления или посредством скашивания стержней под углом Брюстера. Однако часто с этими потерями приходится мириться, что допустимо благодаря большому усилению в веществе. Но тогда необходимо концевые поверхности отполировать под малым углом наклона друг относительно друга (по меньшей мере около 1°), чтобы они не образовали лазерный резонатор или вторичный резонатор внутри главного резонатора.

Рис. 2.2. Установка для накачки с двойным эллиптическим отражателем. 1 - лампы; 2 - АИГ - Nd-стержень; 3 - отражатель; 4 - водяное охлаждение.

Для генерации ультракоротких световых импульсов с помощью АИГ: Nd-лазера успешно применяются различные методы. Для лазера с непрерывной накачкой применяется преимущественно метод активной синхронизации мод с использованием акустооптических или электрооптических модуляторов. В случае АИГ: Nd-лазера с импульсной накачкой чаще всего с помощью пассивной синхронизации создается такой режим, при котором лазер испускает цуг ультракоротких импульсов. АИГ: Nd-лазеры в непрерывном и импульсном режимах часто служат источниками света для генерации высших гармоник, а также для параметрической генерации.

Лазеры на красителях

Органические красители в растворе отличаются высокими значениями поперечных сечений поглощения и испускания, а также широкими полосами. Они пригодны как активные вещества для лазеров с перестраиваемой длиной волны.

На системы синглетных и триплетных электронных уровней накладываются колебательные уровни. Вследствие большого числа колебательных степеней свободы и сильного уширения линий в жидкостях отдельные колебательные переходы по большей части остаются совсем неразрешенными, так что возникает однородная спектральная полоса.

Лазер на красителе наиболее часто описывается как четырехуровневый лазер. Под действием света накачки происходят переходы на возбужденные колебательные уровни состояния S 1 в соответствии с принципом Франка-Кондона. Колебательная дезактивация состояния S 1 происходит чрезвычайно быстро (~ 10 -13 с), благодаря чему молекулы собираются на нижнем крае системы уровней S 1 .

Кратко остановимся на четырех особенностях лазерного излучения. Выше уже пояснялась причина очень высокой направленности светового луча лазера. Угол его расходимости примерно в 10 4 раз меньше, чем луча хорошего прожектора. На поверхности Луны лазерный луч создает пятно диаметром около 10 км . Благодаря высокой направленности энергия лазерного луча может пере­даваться на очень большие, в том числе и космические, расстояния. Этим создана основа для осуществления связи, передачи по лазерному лучу как телефонных разговоров, так и телевизионных изображений. Требуемая мощность лазерного передатчика при этом в десятки и сотни тысяч раз ниже мощности обычных радиостанций. В будущем лазерный луч будет использоваться и для дальней передачи энергии.

О свойстве необычайно спектральнойширины (монохроматичности ) излучения лазера также говорилось. Спектральный состав лазерного луча много меньше у всех других источников света и радиоволн. Высокая монохроматичность свойственна, однако, нe всем типам лазеров. В ряде случаев (полупроводниковые лазеры, лазеры на растворах красителей) полоса излучений весьма широка, что также может быть использовано на практике.

Третье важнейшее свойство лазерного луча - его высокая когерентность . Фазы различных световых волн, выходящих сквозь зеркала лазерного резонатора, или одинаковы, или взаимно согласованы. Испускание всех других источников в оптическом диапазоне не когерентно (в радио области шкалы электромагнитных волн, однако, многие источники волнового поля дают именно когерентное излучение).

Когерентность широко используется в интерферометрии, голографии и во многих других отраслях науки и техники. Ранее, до появления лазеров, малоинтенсивные когерентные волны в видимой области спектра создавались только искусственно, путем разделения одной волны на несколько.

Как особое свойство лазеров рассматривается возможность достижения высокой интенсивности и низкой длительности импульсов лазерного излучения . Выбор типа лазеров для его практического использования зависит от поставленной задачи. Есть лазеры непрерывного действия. Однако большинство лазерных систем излучает изолированные всплески световой энергии (све­товые моноимпульсы) или целую серию импульсов. Длительности импульсов также различны. В режиме свободной генерации длительность генерации близка к продолжительности свечения ламп накачки.

В режиме непрерывного действия излучают гелий - неоновые лазеры. Мощность лазера всего 0,002…0,020 Вт , что во много раз меньше мощности лампочки карманного фонаря. Для характеристики исключительных свойств излучения этого лазера приведём следующее сравнение. Интенсивность DI в видимом частотном диапазоне, получаемая от Солнца на среднем расстоянии до Земли, равна 186 Вт /м 2 . Эта мощность распределена в спектральном интервале от n 2 = 7,5×10 14 до n 1 = 4,3×10 14 Гц (Dn = n 2 - n 1 » 3×10 14 Гц ). Спектральная плотность интенсивности в солнечных лучах - I n = DI /Dn » 6×10 -13 Вт /(м 2 Гц ). He - Ne лазер может испускать 0,01Вт в пучке с поперечным сечением 1 мм 2 , соответственно интенсивность в световом пятне на экране равна 10 6 Вт /м 2 . Поскольку ширину спектральной линии такого лазера можно принять как Dn = 100 кГц , то спектральная плотность излучения He - Ne лазера I n » 10 Вт /(м 2 Гц ). Таким образом, спектральная плотность излучения даже относительно маломощного лазера на 13 порядков больше, чем у Солнца или другого теплового источника света. Именно поэтому характер взаимодействия с веществом лазерного света, распространяющегося в среде, существенно отличается от хорошо изученных случаев классической оптики.


Газодинамические лазеры на смеси СО 2 + N + He , работающие в непрерывным режиме в ИК области (~10 мкм ), имеют мощности в миллион раз больше (порядка сотен и тысяч Ватт). Чтобы оценить возможности подобных источников энергии, надо вспомнить, что для плавления 1 см 3 металла необходимо ~50 Дж . Если мощность лазерного луча 500 Вт , то в прин­ципе он может расплавить за 1 с ~ 10 см 3 металла. Реальные цифры, достигаемые на опыте, существенно меньше, так как значительная доля световой энергии, падающей на поверхность металла, отражается от нее.

Отметим, что понятие мощности говорит о концентрации энергии во времени, о способности системы произвести значительное действие в за­данный (обычно короткий) промежуток времени. Огромные мощности некоторых типов лазеров, излучающих моноимпульсы, свидетельствуют о высоком качестве лазерной энергии. Можно, например, получить в считанные мгновения плотности энергии, превышающие плот­ности энергии ядерного взрыва. С помощью лазеров удается получить температуры, равные десяткам миллионов градусов, давления порядка 100 млн атмосфер. С помощью лазеров получены самые высокие магнитные поля и т.д.

Для сокращения длительности импульсов излучения внутри резонатора лазера обычно помещают различные управляющие устройства - внутрирезонаторные модуляторы или создают многокаскадные схемы усиления из ряда последовательных звеньев, содержащих активные элементы. Применение полупроводниковых лазеров в системе накачки, элементов волоконной оптики и нелинейных преобразователей лазерного излучения позволило создать исключительно компактные эффективные и компактные лазерные системы.

В первом моноимпульсном генера­торе на рубине длительность свечения в импульсах достигала ~10 -8 с . Современные лазеры способны излучать импульсы длительностью около 5 фс , т. е. менее двух периодов све­товой волны, что близко к фундаментальному пределу. Даже сравнительно скромная по лазерным масштабам энергия излучения, будучи сосредоточенной в импульсе ультракороткой длительности (УКИ), дает высокую мощность, а при фокусировании пучка - огромную интенсивность. В частности, созданная в Ливерморской Национальной лаборатории (США) установка позволяет получать УКИ лазерного излучения с энергией 660 Дж при длительности импульса 440 фс , что обеспечивает получение пиковой мощности порядка 1 ПВт , а при фокусировании пучка - интенсивность излучения свыше 10 21 Вт /см 2 . Для представления об этой величине следует отметить, что давление света в этом случае составляет 300 Гбар , что сравнимо с давлением в центре Солнца. В данном примере рост мощности лазерного излучения достигался, главным образом, за счет сокращения длительности импульса. Сравнение современных фемтосекундных лазеров с первым из импульсных лазеров показывает, что увеличение мощности достигло 12 порядков. Для оценки роста энергии излуче­ния можно привести данные о лазерном устройстве УКИ, проектируемом в США для исследований по тер­моядерному синтезу. В 192 пучках этой установки величиной с футбольное поле должна достигаться энергия 2 МДж в импульсе наносекундной длительности. Т.о., рост энергии составит не менее 6 порядков.

Устройство лазера и свойства вынужденного излучения обуславливают отличие лазерного излучения от излучения обычных источников света. Лазерное излучение (ЛИ) характеризуется следующими важнейшими свойствами.

1. Высококогерентностъ. Излучение является высококогерентным, что обусловлено свойствами вынужденного индуцированного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. а) (в следствии пространственной когерентности излучение может быть сфокусировано в очень малом объеме).

2. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, то есть содержит волны практически одинаковой частоты (фотоны имеют одинаковую энергию). Это обусловлено тем, что вынужденное излучение связано с дублированием фотонов (каждый индуцированный фотон полностью подобен первоначальному). При этом формируется электромагнитная волна постоянной частоты. Ширина спектральной линии составляет 0,01 нм. На рис. в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов – монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

3. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3·10 –12 с. Мощность в импульсе равна Р = E/t = 2,5·10 13 Вт (для сравнения: мощность ГЭС Р ~ 10 9 Вт).

4. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

5. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

6. Давление. Лазерный луч при падении на поверхность оказывает давление (р). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, величина создается давление р = I /с, где I – интенсивность излучения, с – скорость света в вакууме. При полном отражении величина давления в два раза больше. При интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 , р = 3,3·10 9 Па = 33000 атм.

7. Малый угол расходимости в пучке. Коллимированностъ. Излучение является коллимированным, то есть все лучи в пучке почти параллельны друг другу (рис.6). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре (для большинства лазеров угол расходимости составляет 1 угловую минуту или меньше). Так как угол расходимости мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Остронаправленность позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

8. Поляризованностъ. Лазерное излучение полностью поляризовано.

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели