Самые эффективные солнечные батареи: КПД, мощность и показатели напряжения. Солнечные панели (батареи) для дома Солнечные панели с большим кпд

Самые эффективные солнечные батареи: КПД, мощность и показатели напряжения. Солнечные панели (батареи) для дома Солнечные панели с большим кпд

15.08.2023

Достигнуть впечатляющих для сегмента фотоэлектрических элементов успехов удалось стартапу Инновационного парка EPFL в Германии.

Согласно опубликованной пресс-службой учебного заведения информации, команде студентов Института Фраунгофера во главе с руководителем проекта Лораном Кулотом удалось модернизировать применяемые в космической сфере технологии, существенно удешевив производство и повысив эффективность солнечных батарей. Показатели КПД прототипа будущей массовой фотоэлектрической панели, которую создатели рассчитывают превратить в серийный продукт после разрешения технологических вопросов и поиска инвесторов, вдвое превышают стандартные для отрасли. Напомним, что КПД имеющихся в продаже солнечных батарей в большинстве случаев достигает 15-20%, что является пределом для применяемых сегодня технологий «улавливания» солнечных лучей с последующим преобразованием этой энергии в электрическую. Полученные в ходе тестирования панели-прототипа результаты показали эффективность выработки электроэнергии на уровне 36,4%, что в случае перехода на массовый выпуск источников преобразования энергии Солнца в электричество позволит достичь выдающегося показателя — 30-32%.

Создатели принципиально нового и сверхэффективного типа солнечной батареи рассказали о примененной ими методике повышения КПД батареи, для чего специалисты EPFL воспользовались оптическими линзами. Применяемые в космосе панели для преобразования солнечной энергии в электрическую изготавливаются с применением сверхдорогих материалов, помогающих улучшить свойства «улавливания» лучей Солнца в специальных мини-ячейках. Немецкие специалисты из независимой лаборатории Института Фраунгофера применили этот же принцип, максимально уменьшив площадь очень дорогого слоя высокопроизводительных ячеек. Вместо «растянутого» на всю площадь панели слоя фотоэлементов из дорогостоящих материалов разработчики взяли маленький кусочек высокопроизводительных ячеек, сконцентрировав на нем весь поступающий на поверхность элемента солнечный свет. Верхний слой поверхности батареи состоит из микроскопических линз, установленных на механической основе, при помощи маленьких сервомоторов смещающей фокусируемый свет точно на фотоподложку в зависимости от расположения земного светила.

Такая методика обеспечивает максимальную эффективность преобразования энергии на протяжении всего светового дня при сохранении низкой стоимости производства. Цена выпуска вдвое более эффективных солнечных элементов после налаживания серийного производства основанных на разработанных специалистами EPFL принципах батарей превысит себестоимость имеющихся на рынке только панелей на 10-15% при стопроцентном наращивании показателя КПД. Говорить о сроках выпуска перспективной разработки в массовых масштабах создатели очень дешевого в сравнении с выпускающимися для применения в космосе образцами решения говорят пока неохотно, ссылаясь на необходимости отработки технологического базиса для налаживания крупносерийного выпуска недорогих в изготовлении, но крайне эффективных солнечных панелей с КПД 36%. Ожидается, что первые мелкосерийные образцы таких элементов появятся не раньше, чем через 2-3 года, когда себестоимость выпуска фотоэлектрических панелей сможет установить новый ценовой рекорд. Сегодня приобретение и установка подобных батарей на загородных участках для вырабатывания электрической энергии «из воздуха» обходится многократно дороже подключения к электросетям — окупать дорогостоящую покупку приходится в буквальном смысле десятилетия.

По этой причине активно продвигаемые на Западе «солнечные плантации» из сотен и тысяч отдельных фотоэлементов продолжают субсидироваться за счет государственных программ стимулирования сферы альтернативной энергетики. Только за счет вложения миллиардов долларов и евро в развитие этой области Европе и США удалось добиться внушительных и внушающих оптимизм экономических показателей, на бумаге выглядящих настоящим прорывом в сфере получения экологически чистой электроэнергии. На деле каждый выработанный из Солнца Киловатт обходится значительно дороже, чем разведка, добыча и последующее извлечение из недр земли углеводородов, продолжающих составлять основу общемировой энергетики. Единственной альтернативой «бесплатной» электроэнергии остается атомная энергетика, категорически вычеркнутая Евросоюзом и большинством других мировых держав из списка доступных источников электричества. Причиной становится опасность повторения трагических событий 1986-го и 2011 годов в советском Чернобыле и японской Фукусиме, когда на эксплуатируемых СССР и Японией соответственно атомных электростанциях фиксировались радиационные аварии предельного по Международной шкале ядерных событий седьмого уровня.

Именно поэтому Запад продолжает рассматривать солнечную энергетику в качестве самого перспективного направления при формировании базы для создания «энергетического задела» будущим поколениям, которым очень скоро придется столкнуться с полным отсутствием легкоизвлекаемых запасов углеводородов — нефти, газа и угля. Уже сегодня запасы расположенных на доступной для современных буровых установок глубине энергетических ресурсов эксперты называют «близкими к истощению», что вынуждает ученых и исследователей энергично перебирать новые варианты для сохранения текущего уровня потребления электричества мировой промышленностью. Потенциально выгодными с технологической точки зрения пока остаются только два направления — ядерная энергетика и фотоэлементы, преобразующие «добирающийся» по поверхности планеты свет галактического светила в нужную для жизнедеятельности человека электрическую энергию. Искусственный отказ от атома оставляет западным державам, в первую очередь Евросоюзу и Соединенным Штатам Америки, только один путь для дальнейшего развития и модернизации собственной энергетики.

По мнению главного операционного директора стартапа EPFL Флориана Герлиха, созданные немецкими специалистами батареи позволят снизить цену за вырабатываемый Киловатт-час электроэнергии для потребителей до приемлемого уровня, когда покупка дорогой солнечной панели даже без привлечения государственных субсидий окупится после непродолжительной эксплуатации. Увеличение КПД до 36% — многообещающий прорыв, способный «встряхнуть» мировую энергетическую систему в рамках общемирового проекта по поиску наиболее выгодных с финансовой точки зрения и показателей экологичности способов получения электричества. На последнее, например, активно «переезжают» выпускаемые крупнейшими автоконцернами автомобили, доля которых с установленными под капотом электродвигателями к 2030-2035 годам достигнет, по предварительным подсчетам экспертов, серьезных 10-12% в масштабе всего автопарка на планете. Активное содействие этому окажут и разработки ученых, на протяжении последних десятилетий продолжающих биться за каждый процент эффективности выработки электроэнергии, добиваясь достижения предельно допустимых значений в гонке за «бесплатными» киловаттами.

Современные исследователи, которые занимаются гелиосистемами, постоянно ведут между собой дискуссии о КПД солнечных батарей. Это один из главных критериев, на основании которого оцениваются их эффективность и уровень производительности. Поскольку затраты на преобразование энергии Солнца в электрическую у панелей по-прежнему велики, производители беспокоятся о том, как сделать их КПД выше.

Известно, что на 1м² площади элементов вырабатывается около 20% от общей мощности излучения Солнца, которое попадает на батарею. При этом речь идет о самых благоприятных условиях климата и погоды, которые бывают далеко не всегда. Следовательно, для увеличения показателя нужно установить много солнечных батарей. Это не всегда бывает удобно, да и по стоимости влетает в «копеечку». Поэтому нужно понимать, насколько целесообразно использование этих альтернативных источников энергии и какие перспективы имеются в дальнейшем.

Итак, КПД батареи - это количество реально вырабатываемого ею потенциала, обозначаемое в процентах. Для его вычисления необходимо мощность электрической энергии разделить на мощность энергии Солнца, попадающей на поверхность солнечных панелей.

Сейчас этот показатель находится в пределах от 12 до 25%. Хотя на практике, учитывая погодные и климатические условия, он не поднимается выше 15. Причиной тому являются материалы, из которых производят солнечные аккумуляторы. Кремний, который представляет собой основное «сырье» для их изготовления, не обладает способностью поглощения УФ-спектра и может работать только с инфракрасным излучением. К сожалению, из-за такого недостатка мы теряем энергию УФ-спектра и не применяем ее с пользой.

Взаимосвязь КПД с материалами и технологиями

Как работают солнечные батареи? По принципу свойств полупроводников. Свет, который падает на них, производит выбивание своими частицами электронов, находящихся на внешней орбите атомов. Большое количество электронов создает потенциал электрического тока - при замкнутых условиях цепи.

Чтобы обеспечить нормальный показатель мощности, одного модуля будет мало. Чем больше панелей, тем эффективней работа радиаторов, отдающих электроэнергию аккумуляторам, где она будет накапливаться. Именно по этой причине эффективность солнечных батарей зависит и от количества устанавливаемых модулей . Чем их больше, тем больше энергии Солнца они поглощают, а показатель мощности у них становится на порядок выше.

Можно ли повысить КПД батареи? Такие попытки были предприняты их создателями, и не один раз. Выходом из положения в будущем может стать производство элементов, состоящих из нескольких материалов и их слоев. Материалы следуют таким образом, чтобы модули могли вбирать в себя разные типы энергии.

Например, если одно вещество работает с УФ-спектром, а другое - с инфракрасным, КПД солнечных батарей в разы повышается. Если мыслить на уровне теории, то наивысшим коэффициентом полезного действия может стать показатель около 90%.

Также на КПД любой гелиосистемы большое влияние оказывает и разновидность кремния. Его атомы можно получить несколькими путями, и все панели, исходя из этого, делятся на три разновидности:

  • поликристаллы;
  • элементы из .

Из монокристаллов производят солнечные батареи, КПД которых составляет около 20%. Они стоят дорого, так как эффективность у них самая высокая. Поликристаллы по стоимости гораздо ниже, так как в данном случае качество их работы напрямую зависит от чистоты кремния, используемого при их изготовлении.

Элементы, в основе которых находится аморфный кремний, стали основой для производства тонкопленочных . Технология их изготовления гораздо проще, стоимость ниже, но и КПД меньше - не более 6%. Они быстро изнашиваются. Поэтому для улучшения срока их службы в них добавляются селен, галлий, индий.

Как сделать работу солнечной панели максимально эффективной

Производительность любой гелиосистемы зависит от:

  • температурных показателей;
  • угла падения лучей Солнца;
  • состояния поверхности (она всегда должна быть чистой);
  • погодных условий;
  • наличия или отсутствия тени.

Оптимальный угол падения лучей Солнца на панель - 90°, то есть прямой. Уже существуют гелиосистемы, оснащенные уникальными устройствами. Они позволяют следить за положением светила в пространстве. Когда положение Солнца по отношению к Земле изменяется, меняется и угол наклона гелиосистемы.

Постоянный нагрев элементов тоже не лучшим образом сказывается на их производительности. Когда энергия преобразуется, возникают ее серьезные потери. Поэтому между гелиосистемой и поверхностью, на которую она монтируется, всегда нужно оставлять небольшое пространство . Воздушные потоки, проходящие в нем, будут служить природным способом охлаждения.

Чистота солнечных батарей - тоже немаловажный фактор влияющий на их КПД. Если они сильно загрязнены, они собирают меньше света, а значит, их эффективность снижается.

Также и правильная установка играет большую роль. Нельзя при монтировании системы допускать, чтобы на нее падала тень. Лучшая сторона, на которой их рекомендуется устанавливать - южная.

Переходя к погодным условиям, можно заодно ответить на популярный вопрос о том, работают ли солнечные батареи в пасмурную погоду. Безусловно, работа их продолжается, потому что электромагнитное излучение, исходящее от Солнца, попадает на Землю во все времена года. Конечно, производительность панелей (КПД) будет значительно меньше, особенно в регионах с обилием дождливых и пасмурных дней в году. Другими словами, электроэнергию они вырабатывать будут, но в гораздо меньшем количестве, чем в регионах с солнечным и жарким климатом.

Немного о батареях-чемпионах по КПД

Рекордсменом по коэффициенту полезного действия в гелиосистемах на данный момент считаются немецкие батареи. Они созданы в Институте гелиоэнергетики им. Фраунгофера. В их основу положены фотоэлементы, состоящие из нескольких слоев. Компания «Сойтек» активно внедряет их в сферу широкого потребления, начиная уже с 2005 года.

Сами элементы - не более 4 мм толщиной, а солнечный свет фокусируется на их поверхности с помощью специальных линз. Благодаря им осуществляется преобразование световых частиц в электроэнергию, а КПД при этом составляет целых 47%.

Второе место заслуженно занимают панели, созданные путем применения фотоэлементов из трех слоев фирмы «Шарп» . Это тоже солнечные батареи с высоким КПД, хотя и немного меньше - 44%.

Три слоя представлены тремя веществами: фосфидом индия (галлия), арсенидом галлия и арсенидом индия (галлия). Между ними располагается диэлектрическая прослойка, применяемая для того, чтобы получить туннельный эффект. Что касается фокусировки света, ее получают путем применения известной линзы Френеля. Концентрация света достигается до уровня в 302 раза, а далее попадает в трехслойный полупроводниковый преобразователь.

Безусловно, подобный рекорд КПД едва ли может быть доступен широкому кругу потребителей. Кстати, Илон Маск, известный американский миллиардер, является владельцем компании «Солар Сити» . Не так давно, в 2015 году, компания Маска разработала именно «потребительский» вариант солнечных батарей с коэффициентом полезного действия, превышающим 22%.

Разработки и многочисленные лабораторные опыты проводятся и по сей день. Можно быть уверенными в том, что такие технологии имеют большое будущее - в качестве экологичного альтернативного источника энергии.

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условий Данный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Постоянно осваивая все новые рубежи, солнечная энергетика движется вперед, поднимая значение КПД солнечных батарей на новые уровни. Не секрет, что производительность, которую выдают солнечные батареи, не может соперничать с устоявшимися источниками энергии . Виной всему низкая производительность существующих панелей.

Влияние на производительность различных факторов

Повышение коэффициента полезного действия солнечных модулей - головная боль всех исследователей, работающих в данном направлении. На сегодняшний день КПД подобных устройств находится в пределах от 15 до 25 %. Процент очень низкий. Солнечные батареи являются крайне прихотливым устройством, стабильная работа которых зависит от множества причин.

К основным факторам, которые могут двояко влиять на производительность, можно отнести:

  • Материал основы солнечных батарей. Самым слабым в этом плане является поликристаллические солнечные батареи, имеющие КПД до 15 %. Перспективными же можно считать модули на основе индий-галлия или кадмий-теллура, имеющие до 20% производительности.
  • Ориентация приемника солнечного потока. В идеале, солнечные батареи своей рабочей поверхностью должны быть обращены к солнцу под прямым углом. В таком положении они должны находиться как можно больший период времени. Для увеличения продолжительности правильного позиционирования модулей в области солнца, более дорогие аналоги имеют в своем арсенале устройство слежения за солнцем, которое поворачивает батареи вслед за движением светила.
  • Перегрев установок. Повышенная температура негативно сказывается на выработке электроэнергии, поэтому при установке необходимо обеспечить достаточную вентиляцию и охлаждение панелей. Этого добиваются устройством вентилируемого зазора между панелью и поверхностью установки.
  • Тень отбрасываемая любым предметом, может значительно испортить показатели КПД всей системы.

Выполнив все требования, и по возможности установив панели в нужном положении, можно получить солнечные батареи с высоким КПД. Именно высоким, а не максимальным. Дело в том, что расчетный, или теоретический КПД, это величина, выведенная в лабораторных условиях, при средних параметрах продолжительности светового дня и количества пасмурных дней.

На практике, конечно же, процент полезного действия будет ниже.

Подбирая солнечные батареи для своего дома, лучше ориентироваться на нижний предел производительности, а не на верхний. Выбрав, таким образом, солнечные модули и все надлежащие для работы компоненты, можно быть уверенным в достаточной мощности устанавливаемой установки. Выбрав нижний предел производительности при расчетах, можно сэкономить на покупке дополнительных панелей, которые покупаются для перестраховки, на случай нехватки мощности.

Обнадеживающие перспективы развития

На сегодняшний день абсолютный рекорд КПД в солнечной энергетике принадлежит Американским разработчикам и составляет 42,8 %. Это значение на 2 % выше предыдущего рекорда 2010 года. Рекордное количество энергии удалось добиться при усовершенствовании солнечной батареи из кристаллического кремния. Уникальностью такого исследования служит тот факт, что все замеры были проведены исключительно в рабочих условиях, то есть не в лабораторных и тепличных помещениях, а в реальных местах предполагаемой установки.

В кулуарах все тех же технических лабораторий не прекращаются работы по увеличению последнего рекорда. Следующая цель разработчиков - граница КПД солнечных модулей в 50 %. С каждым днем человечество все ближе приближается к тому моменту, когда солнечная энергия полностью заменит вредные и дорогие, используемые в настоящее время, источники энергии, и станет в один ряд с такими гигантами как гидроэлектростанции.

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели