Найти точку пересечения прямой и плоскости треугольника. Научная электронная библиотека

Найти точку пересечения прямой и плоскости треугольника. Научная электронная библиотека


В этой статье мы ответим на вопрос: «Как найти координаты точки пересечения прямой и плоскости, если заданы уравнения, определяющие прямую и плоскость»? Начнем с понятия точки пересечения прямой и плоскости. Далее покажем два способа нахождения координат точки пересечения прямой и плоскости. Для закрепления материала рассмотрим подробные решения примеров.

Навигация по странице.

Точка пересечения прямой и плоскости – определение.

Возможны три варианта взаимного расположения прямой и плоскости в пространстве:

  • прямая лежит в плоскости;
  • прямая параллельна плоскости;
  • прямая пересекает плоскость.

Нас интересует третий случай. Напомним, что означает фраза: «прямая и плоскость пересекаются». Говорят, что прямая и плоскость пересекаются, если они имеют только одну общую точку. Это общую точку пересекающихся прямой и плоскости называют точкой пересечения прямой и плоскости .

Приведем графическую иллюстрацию.

Нахождение координат точки пересечения прямой и плоскости.

Введем в трехмерном пространстве Oxyz . Теперь каждой прямой соответствуют уравнения прямой некоторого вида (им посвящена статья виды уравнений прямой в пространстве), каждой плоскости отвечает уравнение плоскости (можете ознакомиться со статьей виды уравнения плоскости), а каждой точке соответствует упорядоченная тройка чисел – координаты точки. Дальнейшее изложение подразумевает знание всех видов уравнений прямой в пространстве и всех видов уравнения плоскости, а также умение переходить от одного вида уравнений к другому виду. Но не пугайтесь, по тексту мы будем приводить ссылки на необходимую теорию.

Давайте сначала детально разберем задачу, решение которой мы можем получить на основании определения точки пересечения прямой и плоскости. Эта задача нас подготовит к нахождению координат точки пересечения прямой и плоскости.

Пример.

Является ли точка М 0 с координатами точкой пересечения прямой и плоскости .

Решение.

Нам известно, что если точка принадлежит некоторой прямой, то координаты точки удовлетворяют уравнениям прямой. Аналогично, если точка лежит в некоторой плоскости, то координаты точки удовлетворяют уравнению этой плоскости. По определению точка пересечения прямой и плоскости является общей точкой прямой и плоскости, тогда координаты точки пересечения удовлетворяют как уравнениям прямой, так и уравнению плоскости.

Таким образом, для решения поставленной задачи нам следует подставить координаты точки М 0 в заданные уравнения прямой и в уравнение плоскости. Если при этом все уравнения обратятся в верные равенства, то точка М 0 является точкой пересечения заданных прямой и плоскости, в противном случае точка М 0 не является точкой пересечения прямой и плоскости.

Подставляем координаты точки :

Все уравнения обратились в верные равенства, следовательно, точка М 0 принадлежит одновременно и прямой и плоскости , то есть, М 0 является точкой пересечения указанных прямой и плоскости.

Ответ:

Да, точка - это точка пересечения прямой и плоскости .

Итак, координаты точки пересечения прямой и плоскости удовлетворяют как уравнениям прямой, так и уравнению плоскости. Этим фактом и будем пользоваться при нахождении координат точки пересечения прямой и плоскости.

Первый способ нахождения координат точки пересечения прямой и плоскости.

Пусть в прямоугольной системе координат Oxyz заданы прямая a и плоскость , причем известно, что прямая a и плоскость пересекаются в точке М 0 .

Искомые координаты точки пересечения прямой a и плоскости , как мы уже говорили, удовлетворяют и уравнениям прямой a , и уравнению плоскости , следовательно, они могут быть найдены как решение системы линейных уравнений вида . Это действительно так, так как решение системы линейных уравнений обращает каждое уравнение системы в тождество.

Отметим, что при такой постановке задачи мы фактически находим координаты точки пересечения трех плоскостей, заданных уравнениями , и .

Решим пример для закрепления материала.

Пример.

Прямая, заданная уравнениями двух пересекающихся плоскостей как , пересекает плоскость . Найдите координаты точки пересечения прямой и плоскости.

Решение.

Требуемые координаты точки пересечения прямой и плоскости мы получим, решив систему уравнений вида . При этом будем опираться на информацию статьи .

Для начала перепишем систему уравнений в виде и вычислим определитель основной матрицы системы (при необходимости обращайтесь к статье ):

Определитель основной матрицы системы отличен от нуля, поэтому система уравнений имеет единственное решение. Для его отыскания можно воспользоваться любым методом. Мы используем :

Так мы получили координаты точки пересечения прямой и плоскости (-2, 1, 1) .

Ответ:

(-2, 1, 1) .

Следует отметить, что система уравнений имеет единственное решение, если прямая a , определенная уравнениями , и плоскость , заданная уравнением , пересекаются. Если прямая a лежит в плоскости , то система имеет бесконечное множество решений. Если же прямая a параллельна плоскости , то система уравнений решений не имеет.

Пример.

Найдите точку пересечения прямой и плоскости , если это возможно.

Решение.

Оговорка «если это возможно» означает, что прямая и плоскость могут не пересекаться.

. Если эта система уравнений имеет единственное решение, то оно даст нам искомые координаты точки пересечения прямой и плоскости. Если эта система не имеет решений или имеет бесконечно много решений, то о нахождении координат точки пересечения не может быть и речи, так как прямая либо параллельна плоскости, либо лежит в этой плоскости.

Основная матрица системы имеет вид , а расширенная матрица - . Определим А и ранг матрицы Т :
. То есть, ранг основной матрицы равен рангу расширенной матрицы системы и равен двум. Следовательно, на основании теоремы Кронекера-Капелли можно утверждать, что система уравнений имеет бесконечное множество решений.

Таким образом, прямая лежит в плоскости , и мы не можем говорить о нахождении координат точки пересечения прямой и плоскости.

Ответ:

Невозможно найти координаты точки пересечения прямой и плоскости.

Пример.

Если прямая пересекается с плоскостью , то найдите координаты точки их пересечения.

Решение.

Составим систему из заданных уравнений . Для нахождения ее решения используем . Метод Гаусса позволит нам не только определить, имеет ли записанная система уравнений одно решение, бесконечное множество решений или не имеет ни одного решения, но и найти решения в случае их наличия.

Последнее уравнение системы после прямого хода метода Гаусса стало неверным равенством, следовательно, система уравнений не имеет решений. Отсюда заключаем, что прямая и плоскость не имеют общих точек. Таким образом, мы не можем говорить о нахождении координат их точки пересечения.

Ответ:

Прямая параллельна плоскости и они не имеют точки пересечения.

Заметим, что если прямой a соответствуют параметрические уравнения прямой в пространстве или канонические уравнения прямой в пространстве , то можно получить уравнения двух пересекающихся плоскостей, определяющих прямую a , и после этого находить координаты точки пересечения прямой a и плоскости разобранным способом. Однако проще использовать другой метод, к описанию которого мы и переходим.

Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h 0α , f 0α .

Алгоритм

  1. Через прямую a проводим вспомогательную фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h 0γ , f 0γ .
  2. Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B" = h 0α ∩ h 0γ , A"" = f 0α ∩ f 0γ . Точки A" и B"" лежат на оси x, их положение определяется по линиям связи.
  3. Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K" = a" ∩ A"B". Фронтальная проекция K"" лежит на прямой a"".

Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными способами .

Видимость прямой a относительно плоскости α. Метод конкурирующих точек

  1. Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A"" и С"" совпадают, но при этом т. A и С удалены от плоскости проекций П 2 на разное расстояние.
  2. Найдем горизонтальные проекции A" и C". Как видно на рисунке, точка C" удалена от плоскости П 2 на большее расстояние, чем т. A", принадлежащая пл. α. Следовательно, участок прямой а"", расположенный левее точки K"", будет видимым. Участок a"" правее K"" является невидимым. Отмечаем его штриховой линией.
  3. Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D" и E" совпадают, но при этом т. D и E удалены от плоскости П 1 на разное расстояние.
  4. Определим положение фронтальных проекций D"" и E"". Как видно на рисунке, точка D"", находящаяся в пл. α, удалена от плоскости П 1 на большее расстояние, чем т. E"", принадлежащая прямой a. Следовательно, участок а", расположенный правее точки K", будет невидимым. Отмечаем его штриховой линией. Участок a" левее K" является видимым.

Линия пересечения двух плоскостей - прямая линия. Рассмотрим сначала частный случай (рис. 3.9), когда одна из пересекающихся плоскостей параллельна горизонтальной плоскости проекций (α π 1 , f 0 α Х). В этом случае линия пересечения а, принадлежащая плоскости α, будет также параллельна плоскости π 1 , (рис. 3.9. а), т. е. будет совпадать с горизонталью пересекающихся плоскостей (а ≡ h).

Если одна из плоскостей параллельна фронтальной плоскости проекций (рис. 3.9. б), то линия пересечения а, принадлежащая этой плоскости, будет параллельна плоскости π 2 и будет совпадать с фронталью пересекающихся плоскостей (а ≡ f).

.

.

Рис. 3.9. Частный случай пересечения плоскости общего положения с плоскостями: а - горизонтального уровня; б - фронтального уровня

Пример построения точки пересечения (К) прямой а (АВ) с плоскостью α (DEF) показан на рис. 3.10. Для этого прямая а заключена в произвольную плоскость β и определена линия пересечения плоскостей α и β.

В рассматриваемом примере прямые АВ и MN принадлежат одной плоскости β и пересекаются в точке К, а так как прямая MN принадлежит заданной плоскости α (DEF), то точка К является и точкой пересечения прямой а (АВ) с плоскостью α. (рис. 3.11).

.

Рис. 3.10. Построение точки пересечения прямой с плоскостью

Для решения подобной задачи на комплексном чертеже необходимо уметь находить точку пересечения прямой общего положения с плоскостью общего положения.

Рассмотрим пример нахождения точки пересечения прямой АВ c плоскостью треугольника DEF представленный на рис. 3.11.

Для нахождения точки пересечения через фронтальную проекцию прямой А 2 В 2 проведена фронтально-проецирующая плоскость β которая пересекла треугольник в точках M и N. На фронтальной плоскости проекций (π 2) эти точки представлены проекциями M 2 , N 2 . Из условия принадлежности прямой плоскости на горизонтальной плоскости проекций (π 1) находятся горизонтальные проекции полученных точек M 1 N 1 . В пересечении горизонтальных проекций прямых А 1 В 1 и M 1 N 1 образуется горизонтальная проекция точки их пересечения (К 1). По линии связи и условиям принадлежности на фронтальной плоскости проекций находится фронтальная проекция точки пересечения (К 2).

.

Рис. 3.11. Пример определения точки пересечения прямой и плоскости

Видимость отрезка АВ относительно треугольника DEF определена методом конкурирующих точек.

На плоскости π 2 рассмотрены две точки NEF и 1АВ. По горизонтальным проекциям этих точек можно установить, что точка N расположена ближе к наблюдателю (Y N >Y 1), чем точка 1 (направление луча зрения параллельно S). Следовательно, прямая АВ, т. е. часть прямой АВ (К 1) закрыта плоскостью DEF на плоскости π 2 (ее проекция К 2 1 2 показана штриховой линии). Аналогично установлена видимость на плоскости π 1 .

Вопросы для самоконтроля

1) В чем заключается сущность метода конкурирующих точек?

2) Какие свойства прямой вы знаете?

3) Каков алгоритм определения точки пересечения прямой и плоскости?

4) Какие задачи называются позиционными?

5) Сформулируйте условия принадлежности прямой плоскости.

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Рассмотрим случаи: 1) когда проецирующую поверхность пересекает проецирующая плоскость; 2) когда проецирующую поверхность пересекает плоскость общего положения. В обоих случаях для построения сечения на эпюре используем алгоритм проецирующей фигуры (алгоритм № 1). В первом случае на чертеже уже известны...
(Начертательная геометрия)
  • Построение линии пересечения двух плоскостей по точкам пересечения прямых линий с плоскостью
    На рисунке 2.60 дано построение линии пересечения двух треугольников АВС и DEF с указанием видимых и невидимых участков этих треугольников. Рисунок 2.60 Прямая К,К2 построена по точкам пересечения сторон АС и ВС треугольника АВС с плоскостью треугольника DEF. ...
    (Инженерная графика)
  • Частные случаи
    При умеренных давлениях (Ре « 1000 атм.) жидкую фазу (например, воду) можно полагать несжимаемой (Ре = const). В этом случае система уравнений для этой несжимаемой среды может быть еще более упрощена и приведена к следующему виду: где, а гидростатическими силами (членом уе7) для...
    (Основы кавитационной обработки многокомпонентных сред)
  • Частные случаи равновесия в непрерывных системах Барометрическое уравнение
    Барометрическое уравнение устанавливает зависимость давления газа по высоте. Существуют восходящие еще к Лапласу многочисленные методы вывода этого уравнения. В данном случае воспользуемся тем, что газ, находящийся в поле силы тяжести, является непрерывной системой, содержащей один компонент - газ с...
    (Термодинамика в современной химии)
  • ЧАСТНЫЕ СЛУЧАИ ВЗАИМНОЙ ПАРАЛЛЕЛЬНОСТИ И ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. ЧАСТНЫЕ СЛУЧАИ ВЗАИМНОЙ ПЕРПЕНДИКУЛЯРНОСТИ ДВУХ ПЛОСКОСТЕЙ
    Если плоскость является проецирующей, то любая одноименно проецирующая прямая параллельна этой плоскости, потому что в плоскости всегда можно найти одноименно проецирующую прямую. Так, на рис. 67 изображены плоскости: Т 1Щ, ФJL Ш, Г1 Пз. Этим плоскостям будут параллельны прямые: а || Т (а 1 Пг);...
    (Начертательная геометрия)
  • ОБЩИЕ СЛУЧАИ. СПОСОБ ПОСРЕДНИКОВ
    Для нахождения точек пересечения прямой линии с поверхностью Ф способом посредников желательно прямую заключать в такую плоскость- посредник Т, которая пересекает заданную поверхность Ф по точной линии - прямой или окружности. Обзор и классификация различных видов таких плоскостей даны ранее (см....
    (Начертательная геометрия)
  • СПОСОБ ПОСРЕДНИКОВ
    Если заданы произвольно обе плоскости общего положения, то задачу можно решить способом посредников в соответствии с алгоритмом № 2. В качестве посредниковвыбирают две плоскости Т и Т1 - проецирующие или уровня (рис. 254). В случае пересечения двух плоскостей алгоритм № 2 запишем так: 1. Выбор Т и Т1....
    (Начертательная геометрия)
  • Здравствуйте друзья! Сегодня разбираем тему из начертательной геометрии – пересечение прямой линии с плоскостью и определение видимости прямой .

    Задание берем из сборника Боголюбова, 1989 год, стр. 63, вар. 1. Нам требуется по заданным координатам построить комплексный чертеж треугольника ABC и прямой MN. Найти точку встречи (пересечения) прямой с непрозрачной плоскостью ABC.Определить видимые участки прямой.


    Пересечение прямой линии с плоскостью

    1. По координатам точек A, B и C строим комплексный чертеж треугольника и прямой NM. Начинаем чертить с горизонтальной проекции. Координаты точек проекции находим при помощи вспомогательных прямых.


    2. Получаем вот такой комплексный чертеж.


    3. Для определения координат точки пересечения прямой и плоскости выполним следующее.

    a) Через прямую NM проводим вспомогательную плоскость Р, т.е. на фронтальной проекции проводим след плоскости Pv, на горизонтальную плоскость опускаем перпендикуляр Рн – горизонтальный след плоскости Р.


    b) Находим фронтальную проекцию линии пересечения следа плоскости Р с треугольником АВС. Это отрезок d’e’. Горизонтальную проекцию находим по линиям связи до пересечения со сторонами ab (т. d) и ac (т. e) треугольника. Точки d и e соединяем.

    c) Вместе пересечения de и nm будет находиться горизонтальная проекция искомой точки пересечения прямой линии с плоскостью k.

    d) Проводим линию связи из k до пересечения с d’e’, получаем фронтальную проекцию точки k’.

    e) по линиям связи находим профильную проекцию точки k’’.


    Координаты точки пересечения прямой и плоскости К найдены. Эта точка также называется точкой встречи прямой и плоскости.

    Определение видимости прямой

    Для определения видимости прямой воспользуемся методом конкурирующих точек.

    Применительно к нашему чертежу конкурирующими будут точки:

    — точки: d’ принадлежащая a’b’ и e’ принадлежащая n’m’ (фронтально конкурирующие),

    — точки: g принадлежащая bc и h принадлежащая nm (горизонтально конкурирующие),

    — точки: l’’ принадлежащая b’’c’’ и p’’ принадлежащая n’’m’’ (профильно конкурирующие).

    Из двух конкурирующих точек видимой будет та, высота которой будет больше. Граница видимости ограничена точкой К.

    Для пары точек d’ и e’ видимость определяем так: опускаем перпендикуляр до пересечения с ab и nm на горизонтальной проекции, находим точки d и f. Видим, что координата по y для точки f больше, чем у d → точка f видима → видима прямая nm на участке f’k’, а на участке k’m’ невидима.

    Аналогично рассуждаем и для пары точек g и h: на фронтальной проекции координата по z у точки h’ больше, чем у g’ → точка h’ видима, g’ – нет → прямая nm на отрезке hk видима, а на участке kn невидима.

    И для пары точек l’’p’’: на фронтальной проекции координата по x больше у точки p’, а значит она закрывает собой точку l’’ на профильной проекции → р’’ видима, l’’ нет → отрезок прямой n’’k’’ видим, k’’m’’ невидим.

    © 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели