Кв усилитель сделанные левой рукой. Усилители и трансиверы сделанные левой рукой

Кв усилитель сделанные левой рукой. Усилители и трансиверы сделанные левой рукой

Рис. 17
КПЕ с разделённым статором может быть применён в качестве анодного конденсатора в П-контуре и обеспечивает оптимальную его настройку, при условии наличия достаточного расстояния между пластинами (чтобы не пробило ВЧ напряжением. Существует ещё один метод уменьшения начальной ёмкости анодного КПЕ. Подключив этот конденсатор к отводу от катушки П-контура, добиваемся уменьшения вносимой в контур ёмкости и уменьшения влияния КПЕ на частоту его настройки - UA9LAQ).
КПЕ с воздушным диэлектриком и вакуумные: Конденсаторы с воздушным диэлектриком легче найти, они и стóят дешевле, но имеют некоторые недостатки, изложенные выше. Вакуумные КПЕ - дороги, их не так легко найти, но только они, порой обеспечивают П-контуру, всё, что мы хотим от него получить и без применения дополнительных переключаемых конденсаторов постоянной ёмкости. Другим достоинством этих конденсаторов является высокое рабочее напряжение, нечувствительность к загрязнениям окружающей атмосферы и изменениям её влажности и давления и могут проводить большие ВЧ токи. Я никогда не слышал о том, чтобы какой-нибудь вакуумный конденсатор прострелило или в нём образовалась дуга. Средний конденсатор вакуумного типа, применяемый в КВ усилителе может пропускать через себя ВЧ токи во много раз превышающие те, которые способен давать реальный РА. Большинство вакуумных конденсаторов изменяют ёмкость от минимальной до максимальной путём поворота оси регулирования (многооборотные). Конструкция вакуумного КПЕ позволяет устанавливать различные отсчётные устройства со сбросом и установкой в определённое положение, требуемое для отдельных диапазонов. Ограничители в начале и конце регулировки ёмкости КПЕ также предусматриваются, чтобы избежать его повреждения. Установка вакуумных КПЕ может оказаться проблемою, а может и нет, так как большинство таких КПЕ содержат и монтажные приспособления, если таковых не предусмотрено, значит, их легко изготовить. Вакуумные КПЕ могут быть смонтированы в любом положении: вертикально, горизонтально, в подвешенном положении.
Для, по-настоящему, мощного усилителя, лучшим выбором будет применение вакуумных КПЕ, которые не прошивает даже при очень больших подводимых к ним мощностях. Да, не дёшевы они, но скупой платит дважды… (Попадание небольшой части воздуха во время хранения, транспортировки или эксплуатации делают такие КПЕ абсолютно непригодными из-за возникновения в них разрядов. Перед эксплуатацией необходимо проверить КПЕ на утечку с помощью высоковольтного тестера и оберегать их от деформации и ударов при эксплуатации - UA9LAQ).
Один момент: чем выше используемое в усилителе анодное напряжение, чем труднее найти подходящий КПЕ с воздушным диэлектриком, который бы выдержал постоянное анодное напряжение плюс ВЧ и не явился причиной возникновения дуг или проблем с перекрытием по ёмкости. При напряжении на аноде ламп(ы) РА в 3 кВ, ещё можно допустить применение КПЕ с воздушным диэлектриком, проблемы применения их при анодном напряжении 4 кВ и более возрастают по экспоненциальному закону. (Автор, видимо, имеет в виду непосредственное подключение КПЕ к аноду лампы без разделительного конденсатора, но и, будучи включенным после разделительного конденсатора, анодный конденсатор с воздушным диэлектриком в П-контуре должен иметь повышенное расстояние между пластинами: с повышением анодного напряжения возрастает выходное сопротивление лампы, а, значит, увеличивается и РЧ напряжение, значит, риск пробоя промежутка между пластинами КПЕ увеличивается - UA9LAQ).
При покупке вакуумных КПЕ, обратите внимание на состояние электродов (пластин) внутри стеклянного корпуса. Если они потеряли свой сияющий медный вид, значит, скорее всего в КПЕ нарушен вакуум. Если, при полном выкручивании регулировочного винта, отсутствует сопротивление, оказываемое при разведении пластин, то, скорее всего, КПЕ - сломан. В общем, перемещение пластин внутри КПЕ должно сопровождаться сопротивлением (требуется усилие), а внутренности КПЕ должны блестеть, как будто их только что начистили. Иначе, лучше обойдите этот КПЕ стороной!
Переключатель диапазонов: Не скупитесь на эту важную часть РА. Купите себе лучший, какой только сможете достать. Иначе, просто, пожалеете! Очень приличные переключатели изготавливает Radio Switch Corp. Их переключатель модели 86 - хорош, однако, самым лучшим является переключатель топ-модели 88. Этот переключатель рассчитан на напряжение 13 кВ и ток 30 А. Даже 5 кВт передатчик не сможет "зажечь дугу” на этом переключателе. Для П- или L- контуров в этом переключателе потребуется, по крайней мере, два набора контактов, но три – лучше. Группа контактов должна быть предусмотрена на каждый диапазон из используемых. Специальный переходник должен быть использован, чтобы соединить ось переключателя в П-контуре с осью переключателя входных контуров (т. е., при переключении диапазонов РА одной ручкой). Если на входе РА используются резисторы (ненастраиваемый вход), тогда, естественно, надобность в переходнике отпадает. Есть ещё возможность применения отдельных переключателей на входе и выходе усилителя, но, чтобы исключить установку переключателей в неверное несоответствующее положение, необходимо применить какую-либо блокировку: механическую или электронную.
На Рис. 17 показана конфигурация переключателя, которая поможет начинающему конструктору понять требования, предъявляемые к П-контуру на диапазоны 160…10 метров. Поохоттесь за подобными переключателями и на ярмарках, рынках, а также поищите в Интернете, пойдут и исправные б/у.
Накальные дроссели: Дроссель в цепи накала лампы с катодом прямого накала абсолютно необходим, при подогревных катодах, как у ламп типа 8877, без такого дросселя можно и обойтись. Катод прямого накала можно найти почти во всех старых мощных лампах со стеклянным баллоном, в качестве нити накала и катода там используется торированный вольфрам. На таком катоде присутствуют как большой ток, так и большое ВЧ напряжение, которые должны быть развязаны от проникновения в другие цепи, так что, тут и устанавливают мощные дроссели. Такой дроссель обычно громоздок, его намотка производится двойным проводом, виток к витку на ферритовом стержне и содержит количество витков, достаточное для полного удаления ВЧ после дросселя. Развязывающие конденсаторы, обычно ставят сразу после дросселя со стороны подвода напряжения накала от блока питания, на корпус. У этого типа дросселя - очень большая величина индуктивности, при этом, он обеспечивает прохождение через себя больших токов, Я опробовал также использование тороидального дросселя и остался им доволен, тем более, что этот дроссель имел и небольшие габариты.
В лампах с подогревными катодами, такой катод представляет собой оксидированный "рукав”, одетый на нить накала, которая его подогревает для получения электронной эмиссии. Катоды такого типа требуют меньших токов накала, чем первые, рассмотренные выше, и не допускают распространения ВЧ, так как катодный "рукав” оказывает постоянное экранирующее действие (внешняя сторона, сообразно со скин-эффектом излучает и втянута в схему функционирования ВЧ токов, нижняя РЧ токам не подвержена и служит замкнутым экраном, тут можно ещё вспомнить и про токи Фуко - UA9LAQ). Тем не менее, дроссели в цепь накала включать нужно, чтобы исключить попадание, пусть даже случайного выброса ВЧ в питающий комплекс. Дроссель накала в схемах с лампами, имеющими подогревные катоды, уже не должен быть большим, громоздким, иметь большую индуктивность, поскольку действующие в цепи накала ВЧ токи малы. Дроссель имеет небольшие габариты, намотан двойным проводом достаточного сечения для пропускания тока накала в резиновой или тефлоновой изоляции, намотка производится на небольшом кольцевом или стержневом ферритовом сердечнике. Индуктивность дросселя для работы на диапазонах 160…10 метров должна составлять 30…300 мкГн. Развязывающие конденсаторы включают с обоих проводов накала на корпус усилителя в точке подключения к дросселю со стороны блока питания. Ставьте также конденсаторы между проводами накала со стороны цоколя лампы и катодом. Связь нити накала по ВЧ с катодом будет способствовать выравниванию ВЧ потенциалов на обоих. Это будет препятствовать различного рода неоднородностям в сигналах: вспышкам, прострелам, хрустам, пробоям на нить накала, уравняет оба края нити накала по ВЧ, что устранит колебания накального напряжения.


Рис. 18
На Рис. 18 приведена типовая схема включения лампы с подогревным катодом с обычным накальным дросселем.
ALC: Эту схему необходимо делать обязательно. Обойтись без неё можно только в случае, если Вы используете лампу, которая может раскачиваться полной мощностью имеющегося возбудителя. Примером может являтся лампа 3CX1200A7, которая может раскачиваться мощностью до 120 Вт, включительно. Тем не менее, независимо от того, используете Вы лампу 8877 или 3CX800A7, мощности в 120 Вт вполне хватит, чтобы систематически выводить из строя сетки. Система ALC препятствует этому, но если Вам "нравится” менять лампы чаще, чем это требуется, не делайте никакой ALC. Лучшей точкой привязки возбудителя к усилителю является точка между реле приём/передача на входе и входным настраиваемым устройством.
Схема ALC детектирует в усилителе небольшую часть входного ВЧ сигнала возбудителя. Этот выпрямленный сигнал - отрицательной полярности и может изменяться в пределах от -1 до -12 В. Изменяющийся в отрицательную сторону сигнал подаётся обратно в возбудитель, который смещает усилитель мощности в возбудителе, а тот в свою очередь уменьшает выходную мощность возбудителя и этим предотвращает перекачку оконечного РА.
Процедура установки порога ALC заключается в следующем:
1. Настроить усилитель на полную выходную мощность.
2. Подстроить потенциометром установки порога ALC такой уровень, чтобы в выходном сигнале появилось едва заметное уменьшение его мощности.
3. Всё. Установка закончена.
После установки порога ALC, уровень ВЧ раскачки может быть увеличен или уменьшен, но максимальная выходная мощность усилителя, установленная с помощью регулятора ALC, уже не будет превышена.
Расположение регулировочного органа системы ALC может быть как на задней, так и на передней панели управления, но, в любом случае, хорошо помечено. Установочная регулировка оправдывает себя на практике, так как таковая не может быть случайно сбитой (для регулировки нужно взять отвёртку да ещё залезть под крышку, сняв возможный фиксатор). Однажды установленная, регулировка порога ALC редко изменяется.
На Рис. 19 показана типовая схема системы ALC, простая и эффективная.

Рис. 19
Регулироки: Наиболее заметная часть усилителя - панель регуляторов, она же и самая сложная. Есть много способов расположения и управления аппаратом. Насколько проста будет панель управления зависит от разработчика и изготовителя.
Существуют готовые платы, которые можно приобрести и установить в усилитель, но это немного не то, ведь самому создать усилитель с нуля – намного интереснее, тем не менее, для начинающего - это выход из положения. Помните, чем сложнее аппарат, тем труднее с ним управляться и ремонтировать. Простота и надёжность, - вот из чего нужно исходить при разработке усилителя. Если конструктор хочет создать полностью автоматизированный усилитель и чувствует, что может справиться с задачей, то флаг ему в руки… Трудновато будет, да и проблем будет, проблем… Для начинающих советую, строить самые простые, надёжные, без наворотов усилители. После того, как построите попроще, будут и более сложные аппараты, более изящные.
Вот так посмотрите на проблему: ”Ты - инженер-разработчик, ты решил, что сделаешь аппарат, сколько бы времени и сил это не потребовало!”
Послесловие: В наше время, когда легко купить и эксплуатировать любительское оборудование, какое хочешь, легко забыть о том удовлетворении, которое приносит самостоятельное его изготовление. Тот, кто покупает и потом играет дорогой игрушкой, никогда не испытает этого чувства. Тем, кто, всё-таки, хочет испытать его, приложить собственные руки и голову и сделать свой ВЧ усилитель, как их делали в своё время наши коллеги предшественники и посвящена настоящая статья. Невозможно описать словами то чувство завершённости, исполненного долга, удовлетворения от полученного опыта. А ещё и приобретёте чего-нибудь новенького в процессе…
Если у Вас есть вопросы, я с удовольствием поделюсь знаниями и опытом с Вами, если Вы этого искренне желаете.
73 de Matt Erickson, KK5DR
Свободный перевод с английского: Виктор Беседин (UA9LAQ) [email protected]
г. Тюмень ноябрь, 2003 г

Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Усилители и трансиверы сделанные левой рукой

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио - аппаратуры:


  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто - чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов - 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей - трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный - своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы - А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi - fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот - от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

(статью дополнено 07.02.2016г.)

UT5UUV Андрей Мошенский.

Усилитель «Джин»

Транзисторный усилитель мощности

с бестрансформаторным питанием

от сети 220 (230)В.

Идея создания мощного, лёгкого и дешёвого усилителя большой мощности актуальна со времён зарождения радиосвязи. Множество прекрасных конструкций на лампах и транзисторах разработано за последний век.

Но до сих пор идут споры, по поводу превосходства твёрдотельной, либо электронно-вакуумной усилительной техники большой мощности…

В эпоху импульсных источников питания вопрос массогабаритных параметров источников вторичного электропитания не столь остр, но, фактически исключив таковой, применив выпрямитель напряжения промышленной сети, всё равно получается выигрыш.

Заманчивой кажется идея использования современных высоковольтных импульсных транзисторов в усилителе мощности радиостанции, применив для питания сотни вольт постоянного тока.

Вашему вниманию предлагается конструкция усилителя мощности на «нижние» КВ диапазоны мощностью не менее 200 Ватт с бестрансформаторным питанием, построенная по двухтактной схеме на высоковольтных полевых транзисторах. Основное преимущество перед аналогами – массогабаритные показатели, низкая стоимость комплектующих, стабильность в работе.

Основная идея – применения активных элементов – транзисторов с граничным напряжением сток-исток 800В (600В) предназначенных для работы в импульсных источниках вторичного электропитания. В качестве усилительных элементов выбраны полевые транзисторы IRFPE30, IRFPE40, IRFPE50 производства компании “International Rectifier”. Цена изделий 2 (два) дол. США. Чуть проигрывают им по граничной частоте, обеспечивая работу лишь в диапазоне 160м, 2SK1692 производства “Toshiba”. Любители усилителей на базе биполярных транзисторов, могут поэкспериментировать с 600-800 вольтовыми BU2508, MJE13009 и иными подобными.

Методика расчёта усилителей мощности и ШПТЛ приведена в справочнике радиолюбителя коротковолновика С.Г. Бунина Л.П. Яйленко. 1984г.

Моточные данные трансформаторов приведены ниже. Входной ШПТЛ TR1 выполнен на кольцевом сердечнике К16-К20 из феррита М1000—2000НМ(НН). Число витков 5 витков в 3 провода. Выходной ШПТЛ TR2 выполнен на кольцевом сердечнике К32-К40 из феррита М1000—2000НМ(НН). Число витков 6 витков в 5 проводов. Провод для намотки рекомендован МГТФ-035.

Возможно изготовить выходной ШПТЛ в виде бинокля, что хорошо скажется на работе в «верхней» части КВ диапазона, правда там приведенные транзисторы не функционируют из-за времени нарастания и спада тока. Такой трансформатор может быть изготовлен из 2 столбцов по 10 (!) колец К16 из материала М1000—2000. Все обмотки по схеме – один виток.

Данные замера параметров трансформаторов приведены в таблицах. Входные ШПТЛ нагружены на входные резисторы (у автора, 5,6 Ома вместо расчётных), включенные параллельно с ёмкостью затвор-исток, плюс ёмкостью за счёт эффекта Миллера. Транзисторы IRFPE50. Выходные ШПТЛ были нагружены со стороны стоков на безындукционный резистор 820 Ом. Векторный анализатор АА-200 производства RigExpert. Завышенный КСВ может быть объяснён недостаточно плотной укладкой витков трансформаторов на магнитопровод, ощутимым несоответствием волнового сопротивления линии из МГТФ-0,35 требуемому в каждом конкретном случае. Тем не менее, на диапазонах 160, 80 и 40 метров проблем не возникает.

Рис 1. Схема электрическая принципиальная усилителя.

Источник питания мостовой выпрямитель 1000В 6А, нагруженный на конденсатор 470,0 на 400В.

Не забывайте о нормах техники безопасности, качестве радиаторов и слюдяных прокладок.

Рис 2. Схема электрическая принципиальная источника постоянного тока.

Рис 3. Фотография усилителя со снятой крышкой.

Таблица 1. Параметры ШПТЛ TR1, выполненного на кольце К16.

Частота кГц R jX SWR
1850 45,5 +4,2 1,15
3750 40,5 +7,2 1,3
7150 40,2 +31,8 2,1

Таблица 2. Параметры ШПТЛ TR2, выполненного на кольце К40.

Частота кГц R jX SWR
1800 48 -0,5 1,04
3750 44 -4,5 1,18
7150 40,3 -5,6 1,28
14150 31,1 4,0 1,5
21200 х х 1,8
28300 х х 2,2

Рис 4. Выходной ШПТЛ на кольце К40.

Таблица 3. Параметры ШПТЛ TR2, конструкции «бинокль».

Частота кГц R jX SWR
1850 27,3 +26 2,5
3750 46 +17 1,47
7150 49 -4,4 1,10
14150 43 -0,9 1,21
21200 х х 1,41
28300 х х 1,7

Рис 5. Выходной ШПТЛ конструкции «бинокль».

При параллельном включении транзисторов и пересчёте ШПТЛ мощность можно значительно повысить. К примеру, на 4 шт. IRFPE50 (2 в плече), выходном ШПТЛ 1:1:1 и питании 310В на стоках, легко получаема выходная мощность 1кВт. При такой конфигурации КПД ШПТЛ особо высок, методика выполнения ШПТЛ неоднократно описана.

Авторский вариант усилителя на двух IRFPE50, приведенный на фотографиях выше по тексту, прекрасно работает на диапазонах 160 и 80 м. Мощность 200 Ватт на нагрузке 50 Ом при входной мощности около 1 Ватта. Цепи коммутации и «обвода» не приведены и зависят от Ваших пожеланий. Прошу обратить внимание на отсутствие в описании выходных фильтров, эксплуатация усилителя без которых недопустима.

Андрей Мошенский

Дополнение (07.02.2016):
Уважаемые читатели! По многочисленным просьбам, с разрешения Автора и редакции, выкладываю Также, привожу фотографию новой конструкции усилителя «Джин».

КВ усилитель мощности на двух лампах ГИ-7Б.


Усилитель с использованием двух ламп ГИ-7Б выполнен по традиционной схеме. Несмотря на то, что данная лампа разработана для работы в импульсном режиме при анодной модуляции, при подаче напряжения возбуждении в катод лампы, и условии использования только левой части анодно-сеточных характеристик и принятии дополнительных мер согласования каскадов по сопротивлению, удается получить удовлетворительную линейность усиления благодаря эффекту возникновения автоматической обратной связи по току.

Блок усилителя.

Конструкция усилителя проста и дополнительных пояснений не требует. На рис.1 приведена электрическая принципиальная схема блока усилителя мощности. При проектировании усилителя была предпринята попытка уменьшить вдвое эквивалентное сопротивление ламп на частоте 29,7 МГц. В виду того, что полученное эквивалентное сопротивление ламп достаточно высоко, реализация индуктора с достаточно высоким КПД для диапазона 10 м не представляется возможным. Для этого были использованы два дополнительных индуктора - L2, L3. Входное сопротивление катодной части усилителя при максимальном входном сигнале равно 43 Ом, то есть близко к 50 Ом. Однако вопреки бытующему мнению, обойтись без дополнительного согласования выходного каскада трансивера с входной частью усилителя невозможно.

Электронно-вакуумные приборы представляют собой реактивную нагрузку. А это значит, что входное сопротивление лампы изменяется с изменением уровня напряжения возбуждения и соответственно с изменением протекающего через лампу тока. Т.е. при максимальном напряжении возбуждения в катод, отрицательной полуволной сигнала, будет получено минимальное входное сопротивление, равное в данном случае 43 Ом. При минимальном уровне напряжения входное сопротивление лампы становится чрезвычайно большим, обусловленным током покоя и статическими параметрами лампы. При переходе уровня сигнала возбуждения на положительную полуволну, входное сопротивление лампы стремится к бесконечности и будет, практически, определятся межэлектродными емкостями и частотой сигнала возбуждения.

В таких условиях ни использование согласующих трансформаторов, ни автоматические антенные тюнеры современных трансиверов не в состоянии обеспечить согласование трансиверов с выходными каскадами. Игнорирование необходимости принятия дополнительных мер для согласования трансивера с усилителем ведет к нарушению линейной работы выходного каскада трансивера и возникновению повышенного уровня интермодуляционных искажений в самом усилителе.

Основные параметры ламп в используемом усилителе:

  • Напряжение анода лампы, В ………………….. 2500
  • Напряжение накала, В ………………………. 12,6... 13,2
  • Максимальный анодный ток ламп, А…………..0,7
  • Ток покоя, мА……………………………………50

Высоковольтный блок питания.

На рис.2 приведена электрическая принципиальная схема высоковольтного блока питания. Высоковольтный блок питания выполнен в отдельном корпусе, с минимально возможным числом компонентов. Для ограничения зарядного тока конденсатора фильтра, включение выполнено по двухступенчатой схеме. Высокое напряжение от блока питания к усилителю подается через коаксиальные разъемы и коаксиальный кабель. В целях повышения безопасности экранная оплетка кабеля соединена с корпусом блока питания и усилителя. Мощность трансформатора для работы только в режиме SSB должна быть не менее 1 кВт.

Если предполагается использовать все виды модуляции, мощность трансформатора должна быть не менее 1,5 кВт. Выходное напряжение блока питания должно быть при отдаваемом токе 50 мА (ток покоя усилителя) не менее 2500 В. Для уменьшения опасности возникновения перенапряжений, на выходе блока питания, связанных с переходными процессами во время эксплуатации усилителя и холостым ходом трансформатора, на выходе фильтра установлено нагрузочное сопротивление R4. Кратковременные перенапряжения могут достигать значительных величин и вызывать возникновение дуги внутри корпуса лампы.

При вводе в работу усилителя необходимо помнить, что при установке новой лампы или если она не использовалась более 3-х месяцев, необходимо начинать ее использование при пониженной генерируемой мощности. Только убедившись, что лампы восстановили вакуум и стабильны, следует переходить на использование усилителя при максимальной выходной мощности. Практика показала, что первое время при вводе ламп в эксплуатацию, рекомендуется использовать их в течение какого то времени примерно на 50% отдаваемой мощности. После чего, постепенно, если не возникает электрических пробоев, лампы вводятся на полную расчетную мощность. Наиболее ответственным в этот период является момент настройки выходного контура в резонанс при помощи КПЕ со стороны анодов ламп, т.к. это соответствует возникновению максимального суммарного напряжения на аноде. Контроль за режимом ламп осуществляется с помощью миллиамперметра в цепи питания управляющих сеток.

При резонансе контура и достаточной мощности возбуждения возникает максимальная амплитуда переменного напряжения на аноде, в связи с чем остаточное напряжение на аноде становится ниже минимально допустимого, в результате возникает эффект перехвата электронного потока сетками ламп. Управление этим процессом осуществляется своевременным увеличением передачи мощности в нагрузку с помощью выходного переменного конденсатора Pi-контура или регулированием мощности возбуждения усилителя. И то и другое ведет к уменьшению переменного напряжения на аноде и вместе с этим к уменьшению тока управляющих сеток.

Схема управления

Блок управления усилителем выполнен по упрощенной схеме, и не имеет каких либо особенностей. На рис.3 приведена электрическая принципиальная схема блока управления. Стабилизатор +27В выполнен на ИМС КРЕН12А. Для выбора рабочей точки ламп использована схема на транзисторах VT2, VT3. Предохранитель FU2, предотвращает повреждение ламп и полупроводниковых приборов в катодной части ламп в случае возникновения разряда внутри корпуса лампы. На транзисторе VT4 выполнена схема защиты по току управляющей сетки лампы. Ток отсечки выбирается меньше максимального тока одной лампы, так как изначально предполагается использовать только левую часть анодно-сеточных характеристик ламп. Данная мера обеспечит так же защиту обеих ламп по токам сеток.

Элементы схемы управления коммутационных реле на транзисторе VT1 обеспечивают необходимую последовательность переключения реле. При срабатывании защиты по току сетки ламп, функция "reset" выполняется выключением и повторным включением выключателя S3 "Standby". Реле К1 уменьшает электродинамические нагрузки на компоненты схемы и накальные цепи ламп. Задержка составляет 1...2с. Неоновые лампы установленные в выключателях, представляют собой нелинейные элементы, которые снимают возникающие перенапряжения в цепях обусловленные переходными процессами.

Согласование усилителя с нагрузкой

Согласование усилителя с нагрузкой не отличается от типовой. На вход усилителя подается сигнал возбуждения, примерно 30% от необходимого для полного возбуждения. При полностью введенном роторе конденсатора Pi-контура со стороны антенны, вращением ротора конденсатора Pi-контура со стороны анодов ламп, находится резонанс контурной системы. Резонанс определяется по максимальному току управляющих сеток. Если ток сеток отсутствует или имеется обратный ток, то необходимо увеличить мощность возбуждения.

Получив максимум сеточного тока, который не должен превышать максимально допустимого, необходимо выводить пластины конденсатора со стороны подключения антенны, подавая тем самым запасенную контуром мощность в нагрузку. При этом необходимо контролировать, каким либо методом, мощность, отдаваемую в фидер. При полученном максимуме передачи энергии в фидер, ток экранной сетки будет стремиться к минимуму. После чего можно увеличить снова мощность возбуждения и повторить процедуру. Это делается до тех пор, пока не будет получен максимальный анодный ток при минимальном токе управляющих сеток и полной мощности в фидере.

Определив необходимую максимальную мощность возбуждения, можно установить порог срабатывания ALC резистором R7 расположенным в блоке усилителя.

Детали

В данном усилителе были использованы следующие коммутационные реле. Реле, которые были использованы в высоковольтном блоке питания:

  • К1 РПУ-ОУХЛ4 220/8А;
  • К2 РПУ-ОУХЛ4 24-27/8А;

Реле, которые были использованы в схеме управления:

  • К1 РЭС9 паспорт РС4.529.029-00;
  • К2 РЭС22 паспорт РФ4.523.023-00;
  • КЗ РПВ2/7 паспорт РС4.521.952;
  • К4 РЭВ14 паспорт РФ4.562.001-00;
  • К5 РЭС9 паспорт РС4.529.029-00;

Основные параметры усилителя на двух лампах ГИ-7Б

При расчете привязка сделана к напряжению на анодах ламп (2500 В) и току покоя для двух ламп (0,05 А). Расчет линейного усилителя производился при помощи программы "RF Amplifier"s Developer 2001".

Результаты расчета параметров анодной цепи усилителя для одной лампы

  • Анодное напряжение лампы, В ……………………………………………………………….. 2500
  • Максимально допустимое напряжение сетки, В ……………………………………………… 80
  • Анодный ток лампы в режиме несущей, А…………………………………………………… 0,35
  • Ток покоя лампы, А…………………………………………………………………………… 0,025
  • Угол отсечки анодного тока, град…………………………………………………………….. 96,41
  • Максимальный ток анода, А ………………………………………………………………….. 1,034
  • Максимальный анодный ток первой гармоники, А…………………………………………. 0,531
  • Усиление лампы при минимальном остаточном напряжении………………………………. 4,308
  • Коэффициент напряженности режима лампы……………………………………………….. 0,904
  • Амплитудное значение переменного напряжения генерируемого анодом лампы, В……… 2260
  • Минимальное остаточное напряжение на аноде, В………………………………………….. 240
  • Максимальная амплитуда суммарного напряжения на аноде, В………………………….… 4160
  • Колебательная мощность на аноде лампы, Вт……………………………………………….. 600,03
  • Коэффициент для SSB сигнала с учетом пикфактора (р-4) ………………………………… 0,35
  • Средняя колебательная мощность SSB сигнала, Вт ………………………………………... 73,504
  • Максимальная мощность, подводимая к аноду, Вт………………………………………… 875
  • Средний КПД лампы для SSB сигнала………………………………………………………..0,23
  • Средняя подводимая к аноду мощность, Вт………………………………………………… 319,583
  • КПД лампы …………………………………………………………………………………… 0,686
  • Максимальная мощность, рассеиваемая на аноде, Вт ……………………………………… 274,97
  • Средняя мощность, рассеиваемая на аноде, Вт …………………………………………… 246,079
  • Мощность, рассеиваемая на аноде при токе покоя, Вт …………………………………… 62,5
  • Эквивалентное сопротивление анодной цепи лампы, Ом………………………………… 4256

Параметры для второй гармоники

  • Пиковый анодный ток второй гармоники, А ………………………………………………….0,194
  • Колебательная мощность второй гармоники, Вт……………………………………………. 219,22
  • Эквивалентное сопротивление анода для второй гармоники, Ом …………………………. 11649

Параметры для третьей гармоники

  • Пиковый анодный ток третьей гармоники, А………………………………………………… 0,032
  • Колебательная мощность третьей гармоники, Вт……………………………………………. 36,16
  • Эквивалентное сопротивление анода для третьей гармоники, Ом ………………………… 70625

При определении основных параметров для двух ламп, выбранный параметр необходимо увеличить или уменьшить в 2 раза исходя из математической логики.

Таблица 1.

Частота, МГц

1,85

7,05

10,12

14,15

18,1

21,2

24,9

Cin, пФ

L, мкГн

19,03

9,78

4,99

3,12

1,63

0,73

0,53

Cout, пф

2251

1157

13,6

19,1

24,6

28,0

Индуктор выполняется из посеребренной медной трубки диаметром 6 мм. Требование к конструкции - высокая добротность ненагруженного индуктора. Результаты расчета значений элементов анодного П-контура усилителя для диапазонов 160...12 м (для двух ламп) приведены в табл.1.

Таблица 2.

Частота, Мгц

1,85

7,05

10,12

14,15

18,1

21,2

24,9

28,6

L, мкГн

17,43

8,18

3,39

1,49

0,58

0,32

0,12

0,43

L, мкГн +20%

20,92

9,82

4,07

1,79

1,44

0,38

0,14

0,52

Диаметр каркаса, мм

Диаметр провода, мм

Расстояние между витками, мм

Количество витков

16,5

Параметры выходного П-контура из 3-х соединенных последовательно индукторов приведены в табл. 2. Влияние элементов металлического шасси на индукторы было принято равным 20%.

Результаты расчета анодного П-контура усилителя для диапазона 10м (для двух ламп)

  • Частота, МГц ………………………………………….29,7
  • Емкость конденсатора Сinp пФ ……………………… 30
  • Индуктивность катушки, мкГн ……………………….0,43
  • Емкость конденсатора Couf пФ ……………………… 352
  • Q полученное………………………………………….19,1

При этом были использованы следующие исходные данные:

Таблица 3.

Частота, Мгц

1,85

7,05

10,12

14,15

18,1

21,2

24,9

29,7

Cin, пФ

2677

1355

L, мкГн

3,69

1,89

0,97

0,67

0,48

0,38

0,32

0,27

0,23

Cout, пф

2838

1458

Результаты расчета входных согласующих П-контуров усилителя приведены в табл. 3. При этом были использованы следующие исходные данные:

Таблица 4.

Частота, Мгц

1.85

7.05

10.12

14.15

18.1

21.2

24.9

28.6

L, мкГн

3,69

1,89

0,97

0,67

0,48

0,38

0,32

0,27

0,24

L, мкГн + 20%

4,43

2,27

1,16

0,58

0,46

0,38

0,32

0,29

Внутренний диаметр L, мм

Диаметр провода L, мм

Расстояние между витками L, мм

Количество витков L

11,9

Q нагруженная

КПД

0,91

0,93

0,94

0,94

0,94

0,94

0,94

0,95

0,95

Перекрытие, кГц

1200

2350

3373

4717

6033

7067

8300

9533

В табл. 4 приведены параметры индукторов входных П-контуров для каждого диапазона. Влияние металлических частей шасси на индукторы было принято равным 20%. Несмотря на большое перекрытие по частоте, особенно на верхних диапазонах, реальное согласование по сопротивлению возможно только в пределах одного диапазона. При использовании одного фильтра для двух и более диапазонов, необходимо применять сложные элептические фильтры.

Cкачать схемы усилителя мощности - zip 730kb.

Усилитель мощности на IRF630 для КВ радиостанции за основу усилителя были взяты IRF630 как наиболее дешёвые и распространенные транзисторы. Цена их колеблется от 0,45 до 0,7 $.
Их основные характеристики: UCи макс = 200 В; 1с макс. = 9 А; U3и макс = ±20 В; S = 3000 мА/В; Сзи = 600…850 пФ (в зависимости от фирмы изготовителя); Сси – не более 250 пФ (реально измеренная Сси на 10 транзисторах разных фирм производителей – около 210 пФ); рассеиваемая мощность Рс – 75 Вт.

Транзисторы IRF630 предназначены для работы в импульсных схемах (развёртки мониторов компьютеров, импульсные блоки питания), но при выведении их в режим, близкий к линейному, дают хорошие показатели и в связной аппаратуре. По результатам моих «лабораторных работ» частотная характеристика этих транзисторов, если пытаться скомпенсировать в максимальной степени входную ёмкость, не хуже, чем у КП904. Во всяком случае, устанавливая их вместо КП904, я получал гораздо лучшие результаты как по АЧХ, линейности и усилению, так и по надёжности работы.

Усилитель мощности на IRF630 для КВ радиостанции испытывался при напряжении питания 36-50 В, но наиболее надёжно и эффективно он работал при напряжении питания 40 В, от стабилизированного источника. Расчёт усилителя производился под выходную мощность 80 Вт, чтобы сохранить надёжность работы, хотя с него можно было «выкачивать» и более 100 Вт. Правда надёжность работы транзисторов падала.

Учитывая входную ёмкость IRF630 и тот факт, что эти транзисторы управляются не током, а напряжением, в отличие от биполярных. В данном усилителе не удалось устранить некоторый завал частотной характеристики выше 18 МГц (Рвых 30МГц; 0,7РВых макс) хотя схемотехнические меры принимались. Но это присуще многим схемам, в том числе и на биполярных транзисторах.

Линейные характеристики усилителя хорошие, КПД; 55%, что подтверждает данные, которые приводились в упомянутой выше статье. Самое главное – это дешевизна комплектующих деталей, в том числе и транзисторов. Которые можно свободно приобрести на радиорынках и в фирмах, занимающихся ремонтом компьютерных мониторов и блоков питания. Для получения расчетной мощности на вход усилителя необходимо подать сигнал не более 5 В (эфф.) на нагрузке 50 Ом.

При необходимости коэффициент усиления можно снизить. Уменьшив сопротивление R1, R12, R13 (рис.), при этом остальные характеристики практически не изменятся. Но не стоит забывать, что напряжение пробоя затвора транзисторов не превышает 20 В, т.е. Uвх.эфф.макс. нужно умножить на 1,41.

На VT1 собран предварительный усилитель, который охвачен двумя цепями ООС – R1, С6 (линеаризует работу транзистора и предотвращает самовозбуждение за счет уменьшения коэффициента усиления) и R5, С7* (частотнозависимая ООС, корректирующая АЧХ на «верхних» диапазонах). На VT2, VT3 собран двухтактный оконечный каскад с раздельными цепями установки смещения и аналогичными первому каскаду цепями ООС.

П-фильтры L2, С32, СЗЗ, С37, С38 и L3, С35, С36, С40, С41 служат для приведения выходного сопротивления VT2, VT3, которое составляет около 15 Ом, к 25 Ом. Одновременно это ФНЧ с частотой среза около 34 МГц. После трансформатора сложения мощностей ТЗ выходное сопротивление усилителя становится равным 50 Ом. VD1-VD6 – детектор системы ALC и индикатора перенапряжений в стоковой цепи выходных транзисторов, собранного на VD7, VD8, R21, С39 (при достижении пикового напряжения на стоках VT2, VT3 более 50 В, «загорается» светодиод VD7, что свидетельствует о повышенном КСВ).

При задействовании управляющего напряжения для цепей ALC, которое будет изменять уровень мощности. В зависимости от уровня напряжения на выходе, светодиод не будет «загораться». В любом случае нужно помнить, что выходные каскады на транзисторах нужно подсоединять к антенне через согласующее устройство. Ведь антенна – это не активная нагрузка, и на каждом из диапазонов ведёт себя по разному, даже если и написано, что работает на всех диапазонах.

Монтаж усилитель мощности на IRF630 для КВ радиостанции выполнен на плате из двухстороннего стеклотекстолита, на которой скальпелем вырезаны прямоугольные контактные площадки для узлов схемы и «общего провода». По контуру платы оставлена полоска металлизации «общего провода».

Контактные площадки «общего провода» соединяются сквозными перемычками со сплошной металлизацией второй стороны платы через 2…3 см. Детали располагают в том порядке, как указано на схеме (рис.). Таким способом было изготовлено около десятка усилителей. В процессе наладки они показали хорошую повторяемость, качественную и надёжную работу.

Плата коммутации усилитель мощности на IRF630 для КВ радиостанции:

выполняется любым способом и соединяется проводами с усилителем, реле располагаются у входа и выхода усилителя, а управление ими подводится к коммутационной плате. Подстроенные резисторы R1, R2, R3 (рис.2) нужно применять многооборотные, предварительно установив их движки в нижнее по схеме положение. Для того, чтобы при установке тока покоя резким движением не вывести из строя транзисторы.

В истоковые цепи всех транзисторов (рис.1) введены резисторы, которые уменьшают их крутизну по «постоянке», и тем самым дополнительно их защищают. Эти меры были приняты после того, как, набравшись опыта работы с такими транзисторами и выбросив десятка полтора в мусор, я понял, что такая крутизна по постоянному току не нужна. Установка начального тока каждого выходного транзистора в отдельности сделана для того, чтобы не было надобности перебирать кучу транзисторов.

Предварительно устанавливают токи покоя VT1 около 150 мА и VT2, VT3 – по 60-80 мА, но одинаковые в каждом плече, а более точно – с помощью анализатора спектра. Но, как правило, достаточно просто установить правильно токи покоя.

Теперь поговорим о том, как нужно устанавливать транзисторы. Корпус этих транзисторов (ТО-220) напоминает «пластмассовый» КТ819 с выводом стока на металлическую подложку и металлический фланец. Этого не нужно бояться и крепить их на радиатор можно рядом с платой усилителя мощности по разные стороны через слюдяные прокладки. Но слюда должна быть качественной и предварительно обработана теплопроводящей очищенной от песка пастой. Автор заостряет внимание на этом в связи с тем, что к слюде подводится не только постоянное напряжение, а и напряжение ВЧ.

Конструктивная ёмкость крепежа через слюду входит в ёмкость П-фильтров, так же впрочем, как и выходная емкость транзисторов. Транзисторы лучше прижимать к радиатору не через отверстие во фланце, а дюралевой пластиной, прижимающей два выходных транзистора сразу, что обеспечивает лучшую теплоотдачу и не нарушает слюду. Такой же крепёж и у VT1, только в начале платы.

Трансформаторы мотаются на кольцах из феррита марки НН и, в зависимости от наличия, проницаемостью от 200 до 1000. Размеры колец должны соответствовать мощности, я применил 600НН К22х10,5х6,5. Намотка производилась проводом ПЭЛШО-0,41 для Т1 (5 витков в три провода, 4 скрутки на сантиметр) и ПЭЛ-ШО-0,8 для Т2 (4 витка в два провода, 1 скрутка на сантиметр), ТЗ (6 витков в два провода, 1 скрутка на сантиметр). В связи с тем, что не всегда можно найти провод нужного диаметра в шелковой изоляции. Намотку также можно выполнить проводом ПЭВ-2, обязательно «прозвонив» обмотки между собой после намотки трансформатора.

Кольца перед намоткой обматывают слоем лакоткани.

Данные обмоток для каждого трансформатора зависят от марки и типоразмера применяемых колец и в случае применения иных колец их легко можно высчитать по формуле 12 [С.Г.Бунин и Л.П.Яйленко. «Справочник радиолюбителя-коротковолновика», Киев, «Техника», 1984 г., стр.154], где значение Rk для Т1 – 50, для Т2 -15, для ТЗ – 25.

L2, L3 имеют по 5 витков провода ПЭВ-1,5 на оправке диаметром 8 мм, длина намотки 16 мм. Если эти данные полностью сохранить, подстройку фильтров производить практически не нужно. L1 – стандартный дроссель 100 мкГн должен выдерживать ток не менее 0,3 А (например, Д-0,3). Конденсаторы в выходных ФНЧ применяются трубчатые или любые высокочастотные с соответствующей реактивной мощностью и рабочим напряжением. Аналогичные требования и к С26 -С31.

Все остальные конденсаторы должны быть также рассчитаны на соответствующие рабочие напряжения. После включения и выставления всех режимов по постоянному току, подключают нагрузку и корректируют АЧХ усилителя с помощью ГСС и лампового вольтметра или измерителя АЧХ (автор применял Х1-50). Подбором С7, С10, С19-С22 можно корректировать характеристику в области 14-30 МГц (рис.1). Для «выравнивания» Рвых на ВЧ диапазонах, возможно, дополнительно понадобится подобрать количество битков у Т1 и Т2.

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели