Химический элемент замедляющий нервные импульсы. Прохождение информации

Химический элемент замедляющий нервные импульсы. Прохождение информации

Поиск Лекций

Скорость распространения нервных импульсов

В 1830 г. один из крупнейших физиологов XIX века Иоганн Мюллер заявил, что скорость распространения ПД измерить невозможно. По его мнению, поскольку ПД – это электрический импульс, он должен проводиться со скоростью, примерно равной скорости света (3–1010 см/с); учитывая небольшие размеры биологических объектов, даже с помощью лучших инструментов того времени измерить такую скорость было невозможно.

Спустя 15 лет один из студентов Мюллера Герман фон Гельмгольц с помощью простого и изящного эксперимента, который легко воспроизвести на студенческом лабораторном практикуме (рис. 6–8), измерил скорость распространения импульсов в нерве лягушки. В своих опытах Гельмгольц раздражал нерв в двух участках, отстоящих друг от друга на 3 см, и измерял время от момента подачи стимула до максимума мышечного сокращения. Предположим, что при раздражении дистального (расположенного ближе к мышцам) участка это время уменьшается на 1 мс. Тогда скорость распространения импульсов V равна

Эта величина оказалась на семь порядков меньше, чем скорость распространения электрического тока в медном проводнике или в растворе электролита. Отсюда Гельмгольц сделал совершенно правильный вывод, что проведение нервного импульса –это более сложный процесс, чем простое продольное распространение тока в нервном волокне.

Скорость распространения импульсов в различных аксонах варьирует от 120 м/с (в некоторых крупных волокнах) до нескольких сантиметров в секунду (в очень тонких аксонах). Эти различия между скоростью проведения в разных волокнах иллюстрируют табл. 6–1 и рис. 6–9.

Скорость распространения импульса в значительной степени зависит от того, как быстро участок мембраны, расположенный на определенном расстоянии от места подачи стимула, деполяризуется местными токами до порогового уровня. Чем выше постоянная длины волокна, тем дальше могут распространяться эти токи, тем быстрее происходит деполяризация мембраны впереди от места возбуждения и, следовательно, тем выше скорость распространения импульса. Влияние постоянной длины на эту скорость можно продемонстрировать, если поместить аксон в масло или в воздух. При этом на поверхности аксона остается лишь тонкая пленка солевого раствора, и постоянная длины уменьшается из–за увеличения наружного продольного сопротивления [в уравнении (6–2) –r 0]. В этих условиях скорость проведения возбуждения будет ниже чем при погружении аксона в солевой раствор.

Таблица 6–1. Классификация нервных волокон лягушки по их диаметру и скорости проведения возбуждения (Erlanger, Gasser, 1937)

В процессе эволюции живые организмы выработали два способа увеличения постоянной длины аксона и тем самым–скорости распространения импульса. Один из них (типичным примером могут быть гигантские аксоны кальмаров, членистоногих кольчатых червей, костистых рыб) – это увеличение диаметра аксона, т. е. уменьшение внутреннего продольного сопротивления [в уравнении (6–2) – r i] Подробнее этот вопрос рассмотрен в дополнении 6–2. Гигантские аксоны развились в процессе эволюции у некоторых видов животных для того, чтобы обеспечивать быструю синхронную активацию двигательных рефлексов, например движений мантии у кальмара и рефлекса отдергивания либо избегания у некоторых членистоногих (раков, тараканов) и кольчатых червей (например, земляных).

Сальтаторное проведение

Второй способ увеличить скорость проведения нервных импульсов, реализовавшийся только у позвоночных животных, состоит в изоляции участков аксона с помощью миелиновой оболочки. При этом постоянная длины соответствующих участков значительно увеличивается, и тем самым существенно облегчается проведение тока в продольном направлении. По мере развития животного миелин откладывается вокруг периферических и центральных аксонов глиальными клетками, расположенными вблизи этих аксонов. В результате вокруг волокон образуется плотная многослойная оболочка из клеточных мембран. К клеткам, синтезирующим миелин, относятся шванновские клетки (в области периферических нервов) и олигодендроциты (рис. 6–10) (в ЦНС). На поперечных срезах миелиновой оболочки видны периодически повторяющиеся промежутки в 12 нм, образующиеся в результате наслоения мембран глиальных клеток. С образованием каждого нового слоя поперечное сопротивление оболочки увеличивается. Поскольку слоев в этой оболочке много, ее емкость гораздо ниже, чем у одиночной мембраны. Многослойная миелиновая оболочка периодически прерывается (так называемые перехваты Ранвье}, и на этих небольших участках возбудимая мембрана аксона контактирует с внеклеточной средой. Между перехватами Ранвье миелиновая оболочка тесно прилегает к мембране аксона, практически вытесняя внеклеточную среду. Кроме того, участки мембраны аксона между перехватами Ранвье, по–видимому, не содержат натриевых каналов.

Благодаря изолирующим свойствам миелиновой оболочки постоянная длины аксона резко возрастает: наличие этой оболочки оказывает такой же эффект, как и увеличение r м [уравнение (6–2)]. Из–за высокого сопротивления миелиновой оболочки местные токи, текущие впереди от волны возбуждения, выходят из аксона почти исключительно в области перехватов Ранвье. Кроме того, поскольку емкость толстой миелиновой оболочки мала, на перезарядку этой емкости в участках между перехватами расходуется лишь очень небольшой ток. Благодаря этим особенностям ПД, возникающий в каком–либо перехвате, электротонически деполяризует лишь мембрану, расположенную в области следующего перехвата, и поэтому импульсы в таких аксонах не распространяются по всей их длине, как в немиелинизированных нервных волокнах (например, в аксоне кальмара). Они возникают лишь в небольших участках мембраны –перехватах Ранвье. Все это обусловливает сальтаторное (скачкообразное) проведение, при котором импульсы распространяются прерывисто от перехвата к перехвату (рис. 6–11). Скорость распространения. ПД при этом резко увеличивается, поскольку электротоническое проведение местных токов между перехватами осуществляется очень быстро. Таким образом, у позвоночных животных Природа решила проблему быстрого распространения нервных импульсов, не прибегая к созданию таких громоздких структур, как гигантские аксоны.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Не́рвный и́мпульс, распространение по нервным волокнам возбуждения (биоэлектрического импульса) в ответ на раздражение нейронов.

Во второй половине 19 века в работах Г. Гельмгольца и Э.

Геринга на нерве лягушки было показано, что биоэлектрический сигнал (ток, или потенциал действия), в отличие от электрического тока в обычном проводнике, распространяется по нервному волокну с конечной скоростью (3-120 м/сек).

Возможность распространения нервных импульсов по нервным волокнам определяется их строением, напоминающим строение электрического кабеля, где роль проводника играют аксоны, а роль изолятора - миелиновая оболочка аксона, представляющая собой мембрану шванновской клетки, намотанную на аксон в несколько слоев.

Основной компонент миелиновой оболочки - липопротеид миелин, обладающий свойствами диэлектрика. Скорость распространения нервных импульсов зависит как от диаметра нервных волокон (чем толще волокно, тем выше скорость), так и от степени их электрической изоляции, так как покрытые миелином волокна при прочих равных условиях быстрее проводят нервные импульсы. Миелиновая оболочка покрывает волокно не непрерывно по всей его длине, а образует подобие изолирующих керамических «муфт», плотно нанизанных на аксон, как на стержень электрического кабеля.

Между соседними «муфтами» из миелина остаются лишь небольшие электрически неизолированные участки, через которые ионный ток может легко вытекать из аксона в наружную среду и обратно, раздражая мембрану и вызывая генерацию потенциала действия исключительно в неизолированных участках аксона, получивших название перехватов Ранвье. Нервный импульс распространяется по миелинизированному нервному волокну скачками - от одного перехвата Ранвье до следующего, что значительно повышает скорость распространения возбуждения от клетки к клетке.

Скорость распространения нервного импульса по толстым миелинизированным волокнам (диаметром 10-20 микрон) у человека достигает 70-120 м/сек, а по самым тонким немиелинизированным нервным волокнам - на два порядка ниже (менее 2 м/сек).

Способность вырабатывать нервные импульсы - одно из основополагающих свойств нейронов.

Нервные импульсы обеспечивают быстрое проведение однотипных сигналов (потенциалов действия) по аксонам на большие расстояния и поэтому являются важнейшим средством обмена информацией как между нервными клетками, так и между нервными и другими типами клеток. Информация о силе раздражения нервной клетки кодируется и передается другим клеткам путем изменения частоты следования нервных импульсов.

Частота следования может варьировать от единиц до сотни нервных импульсов в секунду. Частотный код предполагает сложную периодику следования нервных импульсов, в том числе группирование их в «пачки» с разным числом и характером следования сигналов. Сложная пространственная и временная суммация нервных импульсов составляет основу ритмической электрической активности мозга, регистрируемой с помощью электроэнцефалограммы.

  • Ходжкин А.

    Нервный импульс. М., 1965.

  • Ходоров Б. И. Проблема возбудимости. Л., 1969.
  • Беркенблит М. Б., Глаголева У. Г. Электричество в живых организмах. М., 1988.

Скорость распространения нервных импульсов может быть различной: меньше 1 метра в секунду в очень тонких аксонах и около 100 метров в секунду в толстых аксонах {например, в аксонах, иннервирующих мышцы).

Распространяющийся по аксону электрический импульс, доходя до окончаний аксона на другой нервной клетке, внезапно исчезает. Чарлз Шеррингтон, заложивший основы так называемой синаптологии, назвал точки контакта окончаний аксона с другой нервной клеткой «синапсами».

Для того чтобы «перейти» через синапс, нервный импульс должен быть заново генерирован по другую сторону синапса. Еще 15 лет назад некоторые физиологи считали, что передача импульса через синапс - явление в основном (если не полностью) электрического порядка. Теперь, однако, имеются многочисленные доказательства того, что при такой передаче происходит выделение особых веществ, вызывающих регенерацию импульса. Первое убедительное доказательство того, что в синапсе действует вещество-передатчик, было получено более 40 лет назад Г.

Дейлом и О. Лёви.

Как известно, центральная нервная система человека (включая, конечно, не только головной мозг, но и спинной) состоит примерно из 10 миллиардов (1010) нервных клеток. Почти все нервные клетки, за редким исключением, получают информацию непосредственно в форме импульсов (смотрите рисунок ниже) сразу от нескольких нервных клеток (нередко от сотен их) и передают ее столь же большому числу клеток.

Возбуждение и торможение нервной клетки

Возбуждение и торможение нервной клетки осуществляют нервные волокна, образующие синапсы на ее поверхности.

Вверху (1) двигательный нейрон в состоянии покоя. Импульсы, приходящие по одному возбуждающему волокну (2), еще не в состоянии вызвать разряд двигательного нейрона. Разряд возникает только тогда, когда импульсы приходят и по второму возбуждающему волокну (3) (пороговое состояние нейрона). Если нейрон получает еще и импульсы по тормозному волокну, то он возвращается в подпороговое состояние (4).

Внизу (б) - импульсы приходят только по тормозному волокну. Электрические импульсы, распространяющиеся по возбуждающим и тормозным нервным волокнам, не отличаются друг от друга. Их противоположное действие объясняется выделением в синаптических окончаниях разных химических передатчиков.

В данной нервной клетке в зависимости от ее порога возбуждения может возникнуть разряд импульсов при раздражении всего лишь нескольких приходящих к ней волокон; в других же случаях разряд импульсов не возникает даже при раздражении многих таких волокон.

Давно известно, что различные факторы способны повышать или понижать порог возбуждения нервной клетки.

Более того, примерно 60 лет назад было высказано предположение, что некоторые волокна должны тормозить разряд импульсов в клетке, к которой они подходят, а не возбуждать ее. Предположение это впоследствии подтвердилось, и в настоящее время механизм торможения выяснен. Двум равноценным процессам - торможению и его антиподу - возбуждению нервной клетки - и посвящена данная статья.

«Молекулы и клетки», под ред.

Распространение нервного импульса по нервному волокну

Особенность нервного импульса (потенциала действия) является его самораспространение по нервному или мышечному волокну, в результате которого обеспечивается передача информации от периферических рецепторных окончаний к нервным центрам, а от них к эффекторам.

В мышечных клетках нервный импульс оказывает пусковое влияние на процессы, активизирующие сократительный аппарат. Распространение неровного импульса начинается с момента, когда внутренняя часть нервного волокна заряжается положительно, и разность потенциалов между внутренней средой нерва и наружной может достигать 40-50 мВ.

Проведение нервного импульса можно сравнить с распространением пламени по бикфордовому шнуру: импульс возникает при пороговом запале, идет с определенной скоростью без затухания, передаваясь от возбужденного участка к соседнему – невозбужденному.

В основе объяснения этого механизма лежит теория немецкого физика Л.

Германа (1879) и затем А.

Ходжкина (1937). Согласно этой теории возникший в точке раздражения потенциал действия является источником раздражения соседнего невозбужденного участка волокна. Это происходит вследствие возникновения круговых, или местных токов между возбужденным (т.е. отрицательно заряженным) и соседним (положительно заряженным) участками мембраны.

В результате местного электро-химического сдвига ионной проницаемости мембраны возникает ее деполяризация и достигается критический пороговый потенциал действия. В зоне первоначально возбужденной в это время восстанавливается потенциал покоя. Затем потенциал действия возникает на следующем участке волокна и т.д. Поэтому волна возбуждения проходит вдоль волокна, не затухая и не поворачивая назад, ибо на соседнем пройденном участке находится рефрактерная зона.

Важное свойство возбудимых тканей рефрактерность. Она определяет прерывистости импульсов. В естественных условиях по нервам непрерывно бегут нервные импульсы. Частота этих ритмических зарядов зависит от силы раздражения. Двигательные нейроны могут проводить около 500 импульсов в секунду, промежуточные – 1000.

Таким образом, распространение (проведение) возбуждения заключается в последовательном возникновении и исчезновении потенциала действия на протяжении нервного или мышечного волокна.

Непрерывное проведение импульсов характерно для мышечного волокна и безмякотных, безмиелиновых нервных волокон, имеющих только шванновскую оболочку.

Таких волокон в нервной системе меньшинство. В мякотных нервных волокнах, имеющих миелиновую оболочку (она является хорошим изолятором) круговые токи могут возникать лишь между двумя соседними (возбужденными и невозбужденными) перехватами Ранвье, где миелин отсутствует. Следовательно, возбуждение в миелинизированных нервных волокнах распространяется скачкообразно, сальтаторно (la salto – скачу, прыгаю).

Скорость проведения импульса в нервных волокнах определяется их гистостроением и диаметром. В миелинизированных нервных волокнах она составляет 30-120 м/сек (6 км/мин, 360 км/ч), в безмякотных — 0,5-3 м/сек, в скелетных 5 м/сек. (рис **)

Особенности проведении нервного импульса:

— возбуждение проводится в обе стороны по нервному волокну от места раздражения;

— проведение возбуждения возможно лишь при целостности волокна;

— более толстые волокна обладают наиболее низким порогом возбуждения;

— волокна, входящие в состав одиночных или смешанных нервов проводят возбуждение изолированно, т.е.

не переходя на другие волокна и адресуются лишь своим клеткам;

Проявлением возбуждения нервных волокон является повышение обменных процессов. Возрастает расход кислорода и выделение СО2 , увеличивается расход АТФ, повышается образование молочной кислоты. В окончаниях аксонов нервных клеток при возбуждении секретируются особые химические вещества – медиаторы, оказывающие возбуждающее или тормозящее влияние на иннервируемые ткани.

Изучение природы нервного импульса было связано с особыми трудностями, так как при прохождении импульса по нерву никаких видимых изменений не происходит. Лишь недавно, с развитием микрохимических методов, удалось показать, что во время проведения импульса нерв расходует больше энергии, потребляет больше кислорода и выделяет больше углекислоты, чем в состоянии покоя. Это указывает на то, что в проведении импульса, в восстановлении исходного состояния после проведения или в обоих этих процессах участвуют окислительные реакции.

Когда примерно 100 лет назад было установлено, что нервный импульс сопровождается определенными электрическими явлениями, возникло мнение, что сам импульс представляет собой электрический ток. В то время было известно, что электрический ток распространяется очень быстро, и поэтому высказывалось мнение, что скорость распространения нервного импульса слишком велика, чтобы ее можно было измерить. Десять лет спустя Гельмгольц измерил скорость проведения импульса, раздражая нерв, идущий к мышце, на различных расстояниях от мышцы и измеряя время, протекавшее между раздражением и сокращением. Таким способом он показал, что нервный импульс распространяется гораздо медленнее электрического - в нервах лягушки со скоростью около 30 м/сек. Это, конечно, свидетельствовало о том, что нервный импульс не есть электрический ток, подобный току в медном проводе. Кроме того, мертвый или раздавленный нерв все еще проводит ток, но не проводит нервных импульсов, и, раздражаем ли мы нерв током, прикосновением, приложением тепла или химическими факторами, возникающий при этом импульс распространяв "я со скоростью одного и того же порядка. Из этого мы заключаем, что нервный импульс представляет собой не электрический ток, а электрохимическое возмущение в нервном волокне. Вызванное раздражителем возмущение в одном участке нервного волокна вызывает такое же возмущение в соседнем участке и так далее до тех пор, пока импульс не дойдет до конца волокна. Таким образом, передача импульса подобна горению бикфордова шнура: от теплоты, выделяющейся при горении одного участка шнура, загорается следующий участок и т. д. В нерве роль теплоты выполняют электрические явления, которые, возникнув в одном участке, стимулируют следующий.

Передача нервного импульса сходна с горением бикфордова шнура и в некоторых других отношениях. Скорость горения шнура не зависит от количества тепла, затраченного при его зажигании, если только этого тепла достаточно, чтобы шнур загорелся. Не имеет значения и метод зажигания. Так же обстоит дело и с нервом. Нерв не будет реагировать, пока к нему не будет приложено раздражение определенной минимальной силы, но дальнейшее увеличение силы раздражения не заставит импульс распространяться быстрее. Это обусловлено тем, что энергию для проведения импульса доставляет сам нерв, а не раздражитель. Описанное явление отражено в законе «все или ничего»: нервный импульс не зависит от природы и силы вызвавшего его раздражителя, если только раздражитель обладает достаточной силой, чтобы вызвать появление импульса. Хотя скорость проведения не зависит от силы раздражителя, она зависит от состояния нервного волокна, и различные вещества могут замедлять передачу импульса или делать ее невозможной.

Сгоревший шнур нельзя использовать вторично, нервное же волокно способно восстанавливать свое исходное состояние и передавать другие импульсы. Оно, однако, не может проводить их непрерывно: после проведения одного импульса проходит определенное время, прежде чем волокно сможет передавать второй импульс. Этот промежуток времени, называемый рефрактерным периодом, продолжается от 0,0005 до 0,002 сек. В это время происходят химические и физические изменения, в результате которых волокно возвращается в первоначальное состояние.

Насколько нам известно, импульсы, передаваемые нейронами всех типов - двигательными, чувствительными или вставочными, в основном сходны между собой. То, что один

импульс вызывает ощущение света, другой - ощущение звука, третий - мышечное сокращение, а четвертый стимулирует секреторную деятельность железы, всецело зависит от природы тех структур, к которым приходят импульсы, а не от каких-либо особенностей самих импульсов.

Хотя нервное волокно можно стимулировать в любой его точке, в нормальных условиях возбуждение вызывается только на одном его конце, от которого импульс идет вдоль волокна до его другого конца1. Соединение между последовательными нейронами называется синапсом. Нервный импульс передается с кончика аксона одного нейрона на дендрит следующего через синаптическое соединение путем выделения у кончика аксона определенного вещества. Это вещество вызывает появление нервного импульса в дендрите следующего аксона. Передача возбуждения через синапс происходит значительно медленнее, чем передача его по нерву. В нормальных условиях импульсы проходят только в одном направлении: в чувствительных нейронах они идут от органов чувств к спинному и головному мозгу, а в двигательных - от головного и спинного мозга к мышцам и железам. Направление определяется синапсом, так как только кончик аксона способен выделять вещество, стимулирующее другой нейрон. Каждое отдельное нервное волокно может проводить импульс в обоих направлениях; при электрическом раздражении волокна где-либо в середине возникают два импульса, один из которых идет в одном направлении, а другой - в другом (эти импульсы можно обнаружить соответствующими электрическими приборами),. но лишь тот из них, который идет по направлению к кончику аксона, может стимулировать следующий нейрон в цепи. Импульс, идущий к дендриту, «остановится», достигнув его конца.

Химические и электрические процессы, с которыми связана передача нервного импульса, во многом сходны с процессами, происходящими при мышечном сокращении. Но проводящий импульсы нерв расходует очень мало энергии по сравнению с сокращающейся мышцей; теплота, образующаяся при раздражении нерва в течение 1 мин, в расчете на 1 г ткани эквивалентна энергии, выделяющейся при окислении 0,000001 г гликогена. Это " означает, что если бы нерв содержал в качестве источника энергии лишь 1% гликогена, его можно было бы стимулировать непрерывно в течение недели и запас гликогена не был бы исчерпан. При достаточном снабжении кислородом нервные волокна практически неутомляемы. Какова бы ни была природа «умственного утомления», это не может быть настоящим утомлением нервных волокон. Ссылки по теме

Очень мала по сравнению с окружающей средой. При проведении потенциала действия открываются потенциал-зависимые натриевые каналы и положительно заряженные ионы натрия поступают в цитоплазму по градиенту концентрации , пока он не будет уравновешен положительным электрическим зарядом. Вслед за этим потенциал-зависимые каналы инактивируются и отрицательный потенциал покоя восстанавливается за счёт диффузии из клетки положительно заряженных ионов калия, концентрация которых в окружающей среде также значительно ниже внутриклеточной.

Фазы потенциала действия

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя . Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (около −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы , и анионы . Снаружи - на порядок больше ионов натрия , кальция и хлора , внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов , сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике , так что потенциал действия не распространяется на дендриты).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионо-специфичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Распространение потенциала действия

По немиелинизированным волокнам

По ходу ПД каналы переходят из состояния в состояние: у Na + -каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + -каналов два - закрытое и открытое.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и вычисляется через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Ходжкином и Хаксли.

Проводимость для калия G K на единицу площади

G K = G K m a x n 4 {\displaystyle G_{K}=G_{Kmax}n^{4}}
d n / d t = α n (1 − n) − β n n {\displaystyle dn/dt=\alpha _{n}(1-n)-\beta _{n}n} ,
где:
α n {\displaystyle \alpha _{n}} - коэффициент трансфера из закрытого в открытое состояние для K + -каналов ;
β n {\displaystyle \beta _{n}} - коэффициент трансфера из открытого в закрытое состояние для K + -каналов ;
n {\displaystyle n} - фракция K + -каналов в открытом состоянии;
(1 − n) {\displaystyle (1-n)} - фракция K + -каналов в закрытом состоянии
Проводимость для натрия G Na на единицу площади

рассчитывается сложнее, поскольку, как уже было сказано, у потенциал-зависимых Na + -каналов, помимо закрытого/открытого состояний, переход между которыми описывается параметром m {\displaystyle m} , есть ещё инактивированное/не-инактивированное состояния, переход между которыми описывается через параметр h {\displaystyle h}

Мотонейрон.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов – нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления – аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну, подобно электрическим проводам присоединенным к домам.. Таким образом, один мотонейрон управляет целой группой волокон (так называемая нейромоторная единица ), которая работает как единое целое.

Мышца состоит из множества нейромоторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Рассмотрим более детальное строение клетки нейрона.

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон .

Нейроны – специализированные клетки, способные принимать, обрабатывать, передавать и хранить информацию, организовывать реакцию на раздражения, устанавливать контакты с другими нейронами, клетками органов.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый эндоплазматический ретикулум с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).

Дендриты - ветвящиеся короткие отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Дендрит проводит нервные импульсы к телу нейрона.

Аксоны – длинный отросток, для проведения возбуждения от тела нейрона.

Уникальными способностями нейрона являются:

- способность генерировать электрические заряды
- передавать информацию с помощью специализированных окончаний – синапсов.

Нервный импульс.

Итак, как же происходит передача нервного импульса?
Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).
Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.
Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.
При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.
Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.
Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.

Мы выяснили как нервный импульс проходит по нейрону, теперь разберемся с тем как же передается импульс от аксона к мышечному волокну.

Синапс.

Аксон размещается в мышечном волокне в своеобразных карманах, образующийся из выпячиваний аксона и цитоплазмы клеточного волокна.
Между ними образовывается нервно-мышечный синапс.

Нервно-мышечный синапс – нервное окончание между аксоном мотонейрона и мышечным волокном.

  1. Аксон.
  2. Клеточная мембрана.
  3. Синаптические везикулы аксона.
  4. Белок-рецептор.
  5. Митохондрия.

Синапс состоит из трех частей:
1) пресинаптического(отдающий) элемента, содержащего синаптические пузырьки (везикулы) с медиатором
2) синаптической щели (щель передачи)
3) постсинаптического(воспринимающий) элемента с белками-рецепторами, обеспечивающими взаимодействие медиатора с постсинаптической мембраной и белками-ферментами, разрушающими или инактивирующими медиатор.

Пресинаптический элемент – элемент который отдает нервный импульс.
Постсинаптический элемент – элемент принимающий нервный импульс.
Синаптическая щель – промежуток в котором происходит передача нервного импульса.

Когда нервный импульс в виде потенциала действия (трансмембранный ток, обусловленный ионами натрия и калия) «приходит» к синапсу, в пресинаптический элемент поступают ионы кальция.

Медиатор биологически активное вещество, выделяемое нервными окончаниями и передающее нервный импульс в синапсе. В передаче импульса к мышечному волокну используется медиаторацетилхолин.

Ионы кальция обеспечивают разрыв пузырьков и выход медиатора в синаптическую щель. Пройдя через синаптическую щель, медиатор связывается с белками-рецепторами на постсинаптической мембране. В результате этого взаимодействия на постсинаптической мембране возникает новый нервный импульс, который передается другим клеткам. После взаимодействия с рецепторами медиатор разрушается и удаляется белками-ферментами. Информация передается другим нервным клеткам в закодированном виде (частотные характеристики потенциалов, возникающих на постсинаптической мембране; упрощенным аналогом такого кода является штрих-код на упаковках товаров). «Расшифровка» происходит в соответствующих нервных центрах.
Не связавшийся с рецептором медиатор либо разрушается специальными ферментами, либо захватывается обратно в пузырьки пресинаптического окончания.

Завораживающее видео о том как проходит нервный импульс:

Еще более красивое видео

Синапс

Как проводится нервный импульс (слайд шоу)

Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.

Нервная ткань

Нервная система образована нервной тканью , которая состоит из нервных клеток - нейронов и мелких клеток спутников (глиальных клеток ), которых примерно в 10 раз больше, чем нейронов.

Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.

Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.

Строение нейрона

Нейрон - основная структурная и функциональная единица нервной системы.

Структурно-функциональной единицей нервной системы является нервная клетка – нейрон . Его основными свойствами являются возбудимость и проводимость.

Нейрон состоит из тела и отростков .

Короткие, сильно ветвящиеся отростки - дендриты , по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Каждая нервная клетка имеет один длинный отросток - аксон , по которому импульсы направляются от тела клетки . Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы .

Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой . Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.

Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом . На теле одного нейрона насчитывается 1200–1800 синапсов.

Синапс - пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Каждый синапс состоит из трёх отделов :

  1. мембраны, образованной нервным окончанием (пресинаптическая мембрана );
  2. мембраны тела клетки (постсинаптическая мембрана );
  3. синаптической щели между этими мембранами

В пресинаптической части синапса содержится биологически активное вещество (медиатор ), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передается возбуждение от одного нейрона к другому.

Распространение возбуждения связано с таким свойством нервной ткани, как проводимость .

Типы нейронов

Нейроны различаются по форме

В зависимости от выполняемой функции выделяют следующие типы нейронов:

  • Нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными . Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
  • Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными . Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
  • Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т.е. тела и отростки этих нейронов не выходят за пределы мозга).

Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).

Спинной и головной мозг связаны со всеми органами нервами .

Нервы - покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.

Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели