Докембрийский период. Докембрий

Докембрийский период. Докембрий

05.02.2022

В эдиакарий (635-541 млн лет назад), жизнь на Земле состояла в основном из одноклеточных бактерий и водорослей, но после кембрийского периода в начали доминировать многоклеточные и животные. Кембрий был первым периодом (542-252 млн лет назад), который длился около 57 млн лет, а затем сменился , и периодами. В эти периоды, а также в последующие и эры преобладали позвоночные животные, которые изначально развивались во время кембрия.

Климат и география

Не так много известно о глобальном климате в период кембрия, но необычно высокие уровни углекислого газа в атмосфере (примерно в 15 раз выше, чем в настоящее время) означали, что средняя температура могла превышать 50° С. Около 85% Земли были покрыты водой (по сравнению с 70 % сегодня), большая часть этой области была занята огромными океанами Панталасса и Япета; средняя температура этих обширных морей могла находиться в диапазоне от 38 до 43° С. К концу кембрия, 485 млн лет назад, основная часть суши планеты была сосредоточена на южном континенте Гондвана, который только недавно оторвался от еще большей Паннотии в предшествующий протерозойский эон.

Морская жизнь

Беспозвоночные

Главным эволюционным событием кембрия был «кембрийский взрыв» - явление, которое повлекло за собой резкое изменение в телах беспозвоночных организмов. Это процесс длился десятки миллионов лет.

Опабиния

По какой-то причине кембрий стал свидетелем появления некоторых действительно причудливых существ, в том числе пятиглазых опабиний, колючих галлюцигений и больших аномалокарисов (которые был одними из самых крупных животным того времени).

Виваксия

Большинство из этих не оставили ни одного живого потомка. Это вызвало предположения о том, что могло бы произойти в последующих геологических эпохах, если бы, скажем, "инопланетная" виваксия эволюционировала.

Тем не менее, столь яркие представители беспозвоночных были далеки от единственных форм жизни в океане. Кембрийский период ознаменовал всемирное распространение раннего планктона, а также трилобитов, червей, крошечных моллюсков и мелких простейших. На самом деле, изобилие этих организмов позволило аномалокарисам и другим животным процветать; эти более крупные беспозвоночные находились на вершине и тратили все свое время, питаясь меньшими беспозвоночными, которые находились непосредственной близости от них.

Позвоночные

Кембрийский период ознаменовал появление самых ранних идентифицированных организмов прото-позвоночных, в том числе Пикайи, и немного более продвинутых Myllokunmingia и Haikouichthys. Эти три рода считаются самыми первыми доисторическими рыбами, хотя есть еще вероятность того, что будут обнаружены более ранние кандидаты с позднего протерозоя.

Растительный мир

Есть еще некоторые разногласия относительно того, существовали ли какие-либо настоящие растения в период кембрия. Если это было так, они состояли из микроскопических водорослей и лишайников (которые не имеют склонности к окаменению). Известно, что макроскопические растения, такие как морские водоросли, еще не развились во время кембрийского периода, о чем свидетельствует заметный пробел в летописи окаменелостей.


От возникновения земли до 570 млн лет назад.
Эпоха докембрия продолжалась с момента образования Земли до появления первых многоклеточных организмов примерно 570 млн лет назад. Возраст древнейших из известных нам горных пород составляет всего 3,9 млрд лет, так что о юности нашей планеты мы знаем ничтожно мало. Причем даже эти горные породы претерпели за миллиарды лет столь большие трансформации, что мало о чем могут нам рассказать.
Около 2,5 млрд лет назад вся земная суша была, по всей видимости, объединена в один громадный сверхматерик, впоследствии расколовшийся на несколько.
К концу эпохи докембрия материки вновь слились, образовав новый сверхматерик. Все эти пертурбации на суше и на море сопровождались грандиозными климатическими изменениями. В течение докембрия мир пережил по крайней мере три ледниковых периода. Наиболее древний начался около 2,3 млрд лет назад. Самое грандиозное оледенение за всю историю нашей планеты произошло между 1 млрд и 600 млн лет тому назад.
Ранняя атмосфера Земли не содержала кислорода. Она состояла в основном из газов метана и аммиака, меньшего количества сероводорода, водяного пара, азота и водорода, а также окиси и двуокиси углерода. Однако с возникновением жизни на Земле картина резко изменилась.

Первые клетки. Метан и прочие газы, содержавшиеся в первобытной атмосфере Земли, растворялись в воде морей, озер и луж, образуя сложный химический "бульон" (1). Лабораторные опыты показали, что под воздействием разряда молнии в таком "бульоне" начинают происходить химические реакции и образуются более сложные химические соединения, очень сходные с теми, что встречаются в живых клетках (2). В конечном итоге некоторые из органических соединений приобрели способность к самовоспроизводству, то есть стали создавать копии самих себя (3). В том же "бульоне" содержались и жировые шарики (4). Когда ветер сильно перемешивал "бульон", некоторые сложные соединения могли попадать внутрь этих жировых шариков (5) и оставаться там "взаперти". Со временем эти гибридные структуры эволюционировали в живые клетки, окруженные жировой оболочкой.
Материя жизни.

Все живые существа содержат определенный набор особых химических соединений.
Клетка в основном состоит из протеинов или из синтезируемых ими веществ. Все протеины, встречающиеся в живой материи, образуются нитями особых химических веществ - аминокислот. Клетки содержат также другое химическое вещество - АТФ, используемое для накапливания энергии.
Программа создания новых клеток - и даже новых животных или растений - существует в виде специального химического кода, содержащегося в длинной молекуле под названием ДНК. Каждая разновидность живых организмов обладает своим особым типом ДНК. Все эти вещества - протеины, АТФ и ДНК - содержат углерод, то есть являются органическими соединениями. Но каким же образом возникли первые органические вещества?

Жизнь ставит эксперименты

Газы, образовывавшие раннюю атмосферу Земли, постепенно растворялись в Мировом океане, и в нем возник своего рода "теплый суп" из химических соединений. Поскольку в атмосфере не было кислорода, в ней отсутствовал озоновый слой (озон - разновидность кислорода), который мог бы защитить земную поверхность от вредоносного ультрафиолетового солнечного излучения.
В 20-е гг. XX в. русский ученый Александр Опарин и английский ученый Джон Холдейн выдвинули гипотезу, согласно которой многие миллионы лет это излучение,
совместно с разрядами молний, создавало в химическом "бульоне" все более и более сложные химические соединения, пока наконец не возникло одно органическое соединение - ДНК, способное воспроизводить самое себя.
В 50-е гг. XX в. американский химик Стенли Миллер решил проверить эту гипотезу. Он смешал метан и аммиак над поверхностью теплой воды и пропустил через них электрический ток, создав что-то наподобие молнии. Миллер повторил этот эксперимент многократно, меняя состав газовой смеси и температурный режим. В нескольких случаях он обнаружил, что всего через 24 часа примерно половина углерода, содержавшегося в метане, превратилась в органические соединения типа аминокислот. Значит, можно сделать вывод, что при достаточном времени и соответствующем составе газовой смеси точно так же могли образовываться и более сложные химические соединения, возможно, даже те из них, что входят в состав ДНК.

Первые живые клетки

Химический "бульон" в первобытном океане становился все гуще, и в нем формировались все новые и новые соединения. Некоторые из них образовывали на поверхности воды тонкие сплошные пленки - наподобие пленки из разлившейся на море нефти. Вода перемешивалась, например во время шторма, и пленка разрывалась на отдельные сферические образования, похожие на нефтяные шарики. Внутри них оказывались отдельные химические соединения, которые начинали походить на настоящие живые клетки. Стоило только молекулам ДНК сформироваться в "бульоне" и очутиться вместе с прочими веществами внутри такой оболочки, как это положило начало жизни на Земле.
Первые клетки во многом напоминали современные бактерии. Необходимую энергию они вырабатывали, расщепляя неорганические соединения. Клетки могли извлекать углерод из метана, а также из окиси и двуокиси углерода, растворенных в воде.
Из сероводорода и прочих содержавших его соединений они извлекали водород. Все эти элементы клетки использовали для воспроизводства новой живой материи. Подобные бактерии в наше время встречаются вокруг горячих минеральных источников и действующих вулканов.


Примитивные формы бактерий и цианей (синезеленых водорослей) и по сей день в изобилии встречаются в горячих минеральных источниках. Некоторые из них используют минеральные вещества из этих источников как "сырье" для фотосинтеза.
Ученые полагают, что жизнь могла зародиться в аналогичной среде. В нижней части рисунка, если присмотреться внимательнее, можно различить двух человек на дорожке подле источника.

Укрощая энергию Солнца.

Следующий важнейший этап в эволюционном процессе - укрощение солнечной энергии живой материей. Вместо того чтобы извлекать энергию из неорганических соединений, клетки стали использовать непосредственно энергию солнечных лучей.
Это положило начало фотосинтезу, особому процессу, в ходе которого растения синтезируют питательные вещества при помощи энергии солнечного света. Л вместо того чтобы добывать нужный клеткам водород из таких веществ, как сероводород, они научились извлекать его из куда более распространенной субстанции - воды.

Фотосинтез: громадный скачок эволюции

Растения, водоросли и некоторые виды бактерий "захватывают" солнечный свет при помощи окрашенных химических соединений, содержащихся в клетках, - так называемых пигментов. Эту световую энергию они используют для синтеза всех органических соединений, необходимых им для роста и размножения. Такой процесс называют фотосинтезом, что означает "создание с помощью света". Чтобы из простых химических веществ, например воды или углекислого газа, создать сложные соединения, скажем сахарозу или протеины, встречающиеся в живых клетках, нужно затратить определенное количество энергии. Во многом это напоминает возведение стены: чтобы поднимать кирпичи на верхушку стены и закреплять их на положенном месте, вам необходима энергия. При фотосинтезе эта энергия поступает из солнечного света. Углекислый газ (содержащий углерод и кислород) и вода (состоящая из водорода и кислорода) дают углерод, кислород и водород. Из них синтезируются сахароза и прочие органические соединения, вырабатываемые в ходе фотосинтеза. При этом расходуется не весь кислород часть его выбрасывается в атмосферу.
Чтобы улавливать солнечные лучи, эти новые фотосинтезирующие клетки вырабатывали пигменты - окрашенные вещества, способные поглощать свет. До того времени жизнь па Земле была тусклой и бесцветной. Теперь же она заиграла многоцветьем новых красок. Отныне живые организмы перестали быть привязанными к местам с особо энергоемкими веществами: вода и солнечный свет оказались гораздо более доступными источниками энергии.
Новые фотосинтезаторы обитали в основном в минеральных источниках и теплых прибрежных водах морей, где было достаточно мелко для того, чтобы до них доходил солнечный свет, и в то же время достаточно глубоко, чтобы предохранять их от губительного воздействия ультрафиолетового излучения. Некоторые из клеток продолжали выделять водород из сероводорода; их потомки и по сей день встречаются подле горячих минеральных источников.


Живые строматолиты в заливе Шарк, Австралия. Поскольку в строматолитах происходит фотосинтез, они извлекают из воды растворенный в ней углекислый газ. При этом из раствора выделяется карбонат кальция (известь). Клейкая слизь, вырабатываемая строматолитами, захватывает крохотные частицы извести, и в итоге образуются слои известняка.
Изображение ископаемого строматолита в разрезе, на котором хорошо видны слои известняка и цианобактерий.

Эпоха строматолитов.

Одни из самых ранних фотосинтезирующих организмов, дошедших до нас в ископаемом виде, - строматолиты (см. также с. 34). Эти странные структуры кажутся на первый взгляд состоящими из множества известняковых колец, разделенных тонкими коническими прослойками. На самом же деле их образовали примитивные организмы, похожие на простейших циансоактерий, которых иногда называют сине-зелеными водорослями. Строматолиты отличались невероятным разнообразием форм и размеров. Одни были круглые, как картофелины, другие конусообразной формы, третьи - высокие и тонкие или даже ветвистые.
Окаменевшие строматолиты встречаются по всему миру. Во многих местах они образуют громадные рифы, зачастую поднимающиеся с морского дна на сотни метров сквозь толщу прозрачной воды, подобно современным коралловым рифам в тропиках. Древнейшие ископаемые строматолиты были обнаружены в Западной Австралии, в горных породах возрастом 2,8 млрд лет. Однако неопознанные структуры, которые, по мнению ученых, также могли бы оказаться окаменевшими строматолитами, встречаются даже в породах возрастом не менее 3,5 млрд лет. Живые строматолиты обитают на Земле и в наши дни. Они, как и их далекие предки, предпочитают теплое мелководье. Однако нынешний ареал строматолитов ограничен лишь теми местами, где мало питающихся ими животных.

Красноцветные отложения

Некоторые из древнейших окаменслостей, в том числе многие строматолиты, встречаются в горных породах, именуемых сланцами, что нехарактерно для осадочных пород более поздних эпох. Это долго ставило в тупик геологов, пока до них наконец не дошло, что формирование подобных слоев связано с жизнедеятельностью строматолитов. Постепенно концентрация кислорода в океанах увеличивалась, и он начал вступать в химические реакции с растворенным и воде железом. Образовались
кон" с собственной оболочкой - так называемых органелл. В каждом отсеке была особая внутренняя среда, поэтому в разных частях клетки отныне происходили различные процессы. Теперь химические реакции в клетках стали протекать намного эффективнее. ДНК- вещество, содержащее генетический код, - упорядочилась в специальные структуры - хромосомы. Ученые полагают, что эти новые клетки образовались, когда аэробные клетки стали проникать внутрь других клеток - возможно, для защиты от новых "хищных" клеток. При этом новые клетки делились друг с другом энергией и вырабатываемыми химическими соединениями.
соединения из железа и кислорода - так называемые окислы железа. Они не могли растворяться в воде и оседали на дно вместе с прочими осадками.
Примерно 2,2 млрд лет назад на суше также начали формироваться осадочные породы нового типа - так называемые красноцветные отложения. Эти породы содержали большое количество окислов железа, что придавало им красноватый оттенок цвета ржавчины". Значит, к тому времени кислород появился и в атмосфере. Все железо в океане было уже связано, и избыток кислорода попадал в атмосферу в виде газа.

Отравленные кислородом

На протяжении всего докембрия концентрация кислорода в атмосфере Земли постоянно возрастала. Однако многим живым организмам того времени это не принесло ничего хорошего. Для них это было равносильно грандиозному атмосферному загрязнению. Ведь первые живые организмы возникли в бескислородной среде, и кислород оказался для них смертельным ядом. Многие виды исчезли с лица Земли - это было первое великое вымирание в ее истории. Поистине неисповедимы пути эволюции: сегодня мы не мыслим жизни без кислорода, а для первых живых организмов кислород в атмосфере был смертелен.
В конечном итоге эволюция произвела на свет клетки, способные не просто вы-
жить в кислородной среде, но и обратить ее себе на благо. Ведь некоторые соединения, образующиеся при фотосинтезе, могут при помощи кислорода расщепляться, а выделяемая при этом энергия может использоваться для создания целого ряда новых соединений. В большинстве живых клеток и сейчас так протекает процесс дыхания. Ученые называют его аэробным типом дыхания ("аэробный" означает "использующий воздух"). В ходе этого процесса энергии высвобождается гораздо больше, чем при любых других процессах биораспада, происходящих без участия кислорода. Некоторые "дышащие" клетки даже приобрели способность поглощать другие клетки, используя их как пищу.


Самые первые клетки, так называемые прокариоты (слева), были крайне примитивны. Все содержавшиеся в них химические вещества, включая ДНК с генетическим кодом, были перемешаны и разбросаны по всей клетке. В более поздних - эукариотных - клетках (справа) имелись маленькие внутренние отделения с собственной оболочкой. Они содержали химические вещества для определенных реакций, причем в каждом из них была именно та среда, которая необходима для наиболее быстрого течения данной реакции. ДНК была сосредоточена в хромосомах, находящихся внутри клеточного ядра, окруженного ядерной оболочкой. Ядро управляло всей жизнедеятельностью клетки.
Готовя сцену для эволюции.

Кислород в атмосфере накапливался, и там начал формироваться озоновый слой, который поглощал вредоносное ультрафиолетовое излучение Солнца. Теперь жизнь смогла переместиться ближе к поверхности океанов и даже проникнуть во влажные прибрежные районы суши. Цианобак-терии также становились все сложнее. Они начали группироваться в комья и тонкие нити. И все же новые аэробные клетки, дышащие кислородом, постепенно брали верх.

Изменчивость - катализатор жизни

Что еще важнее, новые клетки стали размножаться совершенно иным способом. Вместо того чтобы попросту делиться пополам и образовывать две другие клетки - точные копии предыдущей, эти новые клетки начали проделывать нечто странное. Две клетки сливались в одну, обменивались частью своих ДНК, а затем вновь делились на две или более новых клеток. Это называется половым размножением. Новые клетки отныне обладали смешанной ДНК от обоих своих родителей. Половое размножение привело к резкому возрастанию изменчивости среди клеток, что, в свою очередь, дало мощный толчок эволюционному процессу.

Первое великое вымирание

Поздний докембрий ознаменовался грандиозными природными катаклизмами. Они сопровождались многочисленными извержениями вулканов, землетрясениями и горообразовательными процессами. Огромное количество вулканического пепла, выброшенного в атмосферу, привело к охлаждению климата; громадные массивы суши надвинулись на полюс, и по всему земному шару расползлись гигантские ледниковые покровы.
В этот период вымерли очень многие виды древних организмов. В конце концов льды начали таять, уровень океана постепенно повышался, и вода затопила прибрежные районы материков. Для существ, обитавших на мелководье, открылись новые, еще не занятые угодья с неограниченными возможностями ведения специализированного образа жизни. К этому времени поверхности Земли достигало намного меньше опасного ультрафиолетового излучения Солнца, чем прежде, поскольку оно не могло преодолеть сгустившийся озоновый слой. Кроме того, кислорода в атмосфере теперь было больше, что вполне устраивало новое поколение живых организмов.


Сегодня в верхних слоях Мирового океана обитает великое множество самых разнообразных одноклеточных организмов. Многие из них, должно быть, очень похожи на те, что населяли моря докембрийской эпохи. Вверху: Перед вами микроскопические стекловидные скелеты радиолярий - одноклеточных животных с длинными тонкими отростками, покрытыми клейкой слизью, с помощью которых они ловили добычу- крохотные организмы. Внизу: Известковые многокамерные раковины фораминиферов - важные руководящие ископаемые. Эти раковины образуют основу некоторых видов известняка. Подобно радиоляриям, одноклеточные фораминиферы имели длинные клейкие отростки для ловли добычи.
Тайна многоклеточных.

Никто толком не знает, как именно возникли первые многоклеточные животные. Возможно, в какой-то момент разделившиеся клетки перестали полностью отделяться друг от друга. Или, напротив, различные клетки начали объединяться и самоорганизовываться. На первый взгляд это кажется невероятным, но не спешите с выводами. В 1907 г. биолог X. Дж. Уилсон провел ряд экспериментов с губками. Он разрезал красную губку на мелкие кусочки и стал пропускать их через специальную установку, дабы отделить клетки друг от друга - пока наконец не получил осадок красного цвета в графине с водой. К немалому его удивлению, за считанные часы клетки вновь сгруппировались в единое целое. Затем они постепенно начали самоорганизовываться в новую губку, формируя камеры, каналы и ветвистые трубочки. Спустя неделю губка была как новенькая. Возможно, именно так и образовались первые многоклеточные животные.
Ныне существуют и такие странные создания, как слизевики, или миксомице-ты. Они похожи на ярко окрашенные комки слизи, ползущие по земле или по коре деревьев. Одна из разновидностей слизевиков, клеточные слизевики, большую часть своей жизни проводит в виде отдельных клеток, копошащихся в почве, где они кормятся бактериями. Но когда запас пищи иссякает, каждая клетка вырабатывает особое вещество, которое привлекает другие клетки слизевика. Миллионы таких клеток собираются вместе и образуют огромную клеточную массу, сильно смахивающую на многоклеточный организм. Эта масса передвигается и реагирует на свет и химические вещества, словно единое животное. В конечном итоге слизевик предстает в виде плодоносящего тела, во многом похожего на спорангий какого-либо гриба. У него имеется высокая ножка с защитной внешней оболочкой, а сверху располагается мешочек со спорами.

Отметины в иле

У этих ранних мягкотелых животных было мало шансов сохраниться в ископаемом виде. Однако они оставили в горных породах свои следы или, точнее, отпечатки. Ямки, из которых мягкотелые добывали пищу, отпечатки тел и отметины в толще ила, где они отдыхали, обнаружили в горных породах, возраст которых 700 млн лет и более. Впрочем, в отложениях, вплоть до тех, возраст которых 640 млн лет, такие следы попадаются крайне редко. К этом периоду как раз подошло к концу оледенение позднего докембрия и сформировались условия для нового грандиозного эволюционного взрыва.


Одно существо или множество организмов? В ответ на химический "сигнал" миллионы амебообразных клеток слизевика собираются вместе, образуя движущуюся пленку, которая в конечном итоге выделяет из себя споровые капсулы на длинных ножках, во многом напоминающие простейшие грибы.
Животные Эдиакар.

В отдаленной части Южной Австралии, в Эдиакарских горах, встречаются древние мелководные и береговые осадочные породы, возраст которых 640 млн лет. Здесь сохранилось множество ископаемых останков животных докембрийской эпохи. В этих породах обнаружено по меньшей мере 30 различных родов многоклеточных организмов; следует заметить, что схожие скопления окаменелостей встречаются в горных породах того же возраста во многих местах по всему земному шару.
Животные Эдиакар жили преимущественно на морском дне. Они кормились в слое органического вещества (детрита), который покрывал донный ил, образованный останками множества одноклеточных организмов, населявших толщу воды над ними. Плоские и кольчатые черви плавали над самым дном или ползали среди осадков. Спешить им было некуда, ибо хищников (животных, питающихся другими животными) здесь было очень мало.
Морские перья поднимались с морского дна, подобно неким перообразным цветкам, тщательно отфильтровывая воду в поисках пищи. Трубчатые черви лежали среди донных отложений, шевеля своими щупальцами в насыщенной детритом воде. Примитивные иглокожие, родичи современных морских звезд и морских ежей, всю свою жизнь проводили в толстом слое ила. Было там и множество крупных плоских животных в форме блина; эти похожие на медуз создания также, судя по всему, обитали на илистом дне. А над ними в морской воде медленно проплывали настоящие медузы.

Предвестники будущего

В Эдиакарских отложениях встречаются многочисленные окаменевшие отпечатки мягкотелых животных, ползавших когда-то по морскому дну. В некоторых местах в иле запечатлелись парные V-образные отметины, похожие па царапины, оставленные парами крохотных ножек. Возможно, это следы примитивных артропод, или членистоногих, - отдаленных предков ископаемых трилобитов, а также современных нам насекомых - пауков и скорпионов. Правда, твердых останков этих животных пока не обнаружено: по всей видимости, они еще не обзавелись твердым панцирем.


Все животные Эдиакар были мягкотелыми. Там обитало множество разновидностей медуз (1). Диксонии (2) и сприггины (3) были плоскими червеобразными существами. Сприггина имела вдоль боков множество крохотных плавательных пластинок, как у современных морских червей. Возможно, это животное- предок трилобитов. Харниодиск (4), ранге" (5) и птеридиний, листообразные морские перья были колониями крохотных животных, похожих на гидр, которые отфильтровывали из воды частицы пищи. А вот трибрахидий (7) для нас полная загадка. У него был Y-образный центральный рот с щетинкообразными отростками. Возможно, он - предок современных иглокожих.

Докембрий

Док е мбрий, древнейшие толщи земной коры и время, соответствующее их образованию и составляющее около 6 / 7 геологической истории Земли. Геологическая история Д. долго оставалась непознанной, несмотря на то, что в породах Д. давно были обнаружены различные следы жизни. Палеонтологический метод, оправдавший себя при расчленении фанерозойских (последокембрийских) образований, здесь считался неприменимым. Для отдельных регионов давалось чисто местное расчленение разрезов Д., т.к. методика их межрегионального сопоставления отсутствовала. Лишь в 30-х гг. 20 в. в изучении стратиграфии и геохронологии Д. начали использоваться радиометрические методы (см. Геохронология ), а также были сделаны попытки сопоставления осадочных толщ Д. по строматолитам (постройки древних водорослей). Длительность Д., по современным данным, определяется от времени возникновения древнейших известных нам геологических образований с возрастом около 3500 млн. лет до начала кембрия (около 570 млн. лет назад). Т. о., продолжительность Д. составила более 2900 млн. лет. Более ранний период истории Земли (около 1 млрд. лет) пока ещё не доступен геологическому изучению.

Расчленение докембрия. Во 2-й половине 19 в. на основании общих историко-геологических данных, степени метаморфизма пород и др. признаков в Северной Америке было предложено расчленение Д. на архей, или археозой (выделен Дж. Дана в 1872), и протерозой (установлен Э. Эммонсом в 1888). Граница между ними, по современным представлениям, совпадает с крупной эпохой складчатости и гранитизации, имевшей место 2500-2700 млн. лет назад. В СССР протерозой обычно делится на нижний, средний и верхний (см. таблицу). Верхний протерозой нередко выделяют под названием "рифей" ("инфракембрий", "синий") и подразделяют по составу органических остатков на 4 части. Верхнее подразделение рифея, относившееся ранее к так называемым переходным слоям от протерозоя к палеозою, обособляется под названием "венд" ("юдомий", "эокембрий" и др.).

Подразделения докембрия

Конец под- разделений (млн. лет)

Протерозой

B начальный период изучения докембрийских образований вместо термина "Д." использовался ряд других, ныне встречающихся лишь в работах зарубежных геологов. К ним относится, например, протозой Седжвика (1838), типом которого являются сильно метаморфизованные породы докембрийского фундамента Шотландских нагорий, Уэльса и др. Резкое отличие рифея от более древних образований Д. (относительно слабый метаморфизм слагающих его пород и возможность палеонтологического датирования вмещающих толщ) привело к тому, что всё шире стали применять деление Д. на нижний (ранний) Д., охватывающий толщи пород архея, нижнего и среднего протерозоя, и верхний (поздний) Д., соответствующий рифею (от 1600 млн. лет до начала кембрия).

Общая характеристика. Отложения Д. распространены на всех материках в пределах древних платформ: Восточно-Европейской, Сибирской (вместе с её древним складчатым обрамлением - Становым хребтом, Патомским нагорьем, северо-восточной частью Восточного Саяна и Енисейским кряжем), Китайско-Корейской, Южно-Китайской и Индийской, а также Северо-Американской, Южно-Американской, Африканской, Австралийской и Антарктической. Кроме того, докембрийские образования слагают ядра поднятий, в том числе срединные массивы в обрамляющих древние платформы более молодых складчатых зонах - байкальской, каледонской, герцинской (варисской) и альпийской.

Геологические образования раннего Д., в значительной степени метаморфизованные, слагают фундамент древних платформ и выходят на поверхность в области их кристаллических щитов - Балтийского, Алданского, Канадского и др. Иногда в пределах древних ядер консолидации (в Северной Америке, Южной Африке и др.) наблюдаются слабо изменённые осадочные и вулканогенные породы, относящиеся, по радиологическим данным, к раннему Д. Вместе с тем древние платформы включают обширные области (Гренвильский пояс Северной Америки, Мозамбикский пояс Африки и др.), содержащие отложения раннего Д., которые подверглись термальному воздействию в более поздние эпохи докембрийской складчатости. Нередко развитые в этих зонах толщи гнейсов с "омоложенными" значениями абсолютного возраста без достаточных оснований относят к позднему Д.

Образования верхнего Д. чаще всего слагают нижнюю часть осадочного чехла древних платформ и представлены относительно слабо изменёнными породами, в которых нередко сохраняютсяглауконит и др. минералы, разрушающиеся даже при слабом метаморфизме.

Раннедокембрийские образования состоят из гнейсов, мигматитов, разнообразных кристаллических сланцев, амфиболитов, реже - джеспилитов, кварцитов и мраморов. Они слагают мощные толщи, собранные в сложные складки и прорванные крупными интрузиями различного состава и возраста (граниты, гранодиориты, габбро и др.). Эти толщи свидетельствуют о мобильных (геосинклинальных) условиях развития, преобладавших на всех материках в раннем Д. В конце раннего Д. появляются слабо дислоцированные и слабо метаморфизованные формации платформенного типа, прорванные интрузиями основных и гранитных пород. Формации позднего Д. более близки по типу к палеозойским и представлены мощными толщами кварцевых песчаников и кварцитов, глинистых сланцев и филлитов, различными вулканогенными образованиями, строматолитовыми доломитами и известняками, реже толщами переслаивания, близкими к флишу . В самом конце Д. появляются толщи пород, сходные с молассами .

На основании перерывов и несогласий в напластовании пород и резких изменений в степени их метаморфизма в Д. установлен ряд эпох повышенной тектоно-магматической активности (см.Докембрийские эпохи складчатости ).

Флора и фауна. В докембрийских отложениях отсутствует скелетная фауна, которая служит основой для построения стратиграфической шкалы фанерозоя, тем не менее разнообразных следов органической жизни здесь довольно много. К ним относятся продукты жизнедеятельности сине-зелёных водорослей (строматолиты) и бактерий (онколиты). Возраст включающих их древнейших отложений, по радиологическим данным, определяется более чем в 2500 млн. лет. Строматолиты и онколиты успешно используются для сопоставления осадочных толщ верхнего протерозоя в пределах отдельных регионов и даже для межконтинентальной корреляции. В кремнистых породах раннего Д. найдены своеобразные нитчатые водоросли, имеющие хорошую сохранность, при которой можно наблюдать детали клеточного строения организма. На многих стратиграфических уровнях в докембрийских толщах встречаются мельчайшие округлые тельца (размером до 50 m) водорослевого происхождения, принимавшиеся ранее за споры. Они известны под названием "акритарх", или "сфероморфид". Эти образования отмечаются в отложениях раннего Д., но особенно обильны они в позднем Д., где на основе их вертикального распределения делаются попытки корреляции разрезов.

Животный мир Д. значительно беднее, чем растительный. Отдельные указания на нахождение в породах Д. остатков животных относятся к объектам, которые, по-видимому, имеют неорганическое происхождение (Aticocania Walcott, Tefemar kites Dons, Eozoon Dawson, Brooksalla Bassler) или являются продуктами выщелачивания строматолитов (Carelozoon Metzger). Многие окаменелости Д. до конца не расшифрованы (Udokania Leites) или не имеют точной привязки (Xenusion querswalde Pompecki). В среднем рифее Туруханского района Красноярского края известны древнейшие сабеллидиты, которые сравнивают с современными погонофорами. Наиболее богат и разнообразен животный мир венда, подробно изученный по уникальным находкам, сделанным в песчаниках Паунд Австралии и серии Нама Южной Африки. Здесь найдены формы, близкие к современным морским перьям (Rangea, Gharnia), древнейшие аннелиды (Spriggina), многочисленные медузоидные формы (Ediacaria, Beltanella, Protodipleurosonia) и формы неясной систематической принадлежности (Parvancoria, Dickinsonia). Многочисленные медузоидные были обнаружены и венде Восточно-Европейской платформы. В венде же встречена Vendia sokolovi Keller с отчётливо сегментированным туловищем, но не имеющая двусторонней симметрии, свойственной трилобитам. Все перечисленные формы лишены твёрдых скелетных частей, отпечатки их могут сохраняться лишь в исключительных случаях.

Докембрий СССР. В СССР отложения раннего Д. распространены очень широко. Лучше всего они изучены на Балтийском щите и в Восточной Сибири. Раннедокембрийские образования Балтийского щита представлены толщами пород архейского и нижне- и среднепротерозойского возрастов. К первым относятся кольская серия слюдяных и слюдяно-гранатовых гнейсов с железистыми (рудными) кварцитами Кольского полуострова и гнейсо-сланцевая беломорская серия Карелии; обе серии сложно дислоцированы и прорваны интрузиями древнейших основных пород (амфиболитов), гранодиоритов и гранитов. Возраст архейских складчатых структур (саамиды, беломориды) определяется в 2500-2700 млн. лет. Нижнедокембрийские образования протерозойского возраста представлены карельскими формациями Карелии, Кольского полуострова. Одновозрастными с ними считаются свекофеннские формации южной Финляндии и Швеции. Стабилизация территории Балтийского щита началась 1900-2000 млн. лет назад в поясе карелид и завершилась 1800-1900 млн. лет назад в поясе свекофеннид. На Украинском щите к архейским образованиям относятся конксковерховцевская серия амфиболитов, сланцев и железистых кварцитов, серии глубоко метаморфизованных гнейсов Побужья, Волыни, Приднепровья и др. районов и сопряжённые с ними гранитоиды и чарнокиты. Нижний и средний протерозой наиболее типично представлен саксаганской метабазитовой серией и вышележащей железорудной, песчаниково-сланцевой криворожской серией. Сходные с ними серии имеются на Воронежском массиве. По данным бурения в фундаменте Русской плиты образования раннего Д. не отличаются от таковых Балтийского щита.

В Сибири нижнедокембрийские образования развиты на Сибирской платформе (в пределах Анабарского массива и Алданского щита), в её западном, южном и юго-восточном обрамлении (от Енисейского кряжа и Алтая до восточного конца Станового хребта), а также на Малом Хингане, Ханкайском массиве, по северному побережью Охотского моря, в бассейне Колымы, на Чукотском и Таймырском полуостровах.

Древнейшие образования архейской эры в Сибири представлены слюдяно-гранатовыми, кордиерит-силлиманитовыми, пироксеновыми гнейсами и сланцами, гранулитами и мраморами, подразделяемыми на несколько серий, во многом пока трудно сопоставимых между собой. Нижний и средний протерозой представлен разнообразными гнейсами (слюдяными, амфиболовыми, силлиманитовыми и др.), частью мраморами и кварцитами (Восточный Саян, Енисейский кряж и др.) и менее метаморфизованными песчано-алевролитовыми толщами (хребет Удокан и др.).

Отложения верхнего Д., слагающего чехол платформ, распространены на Урале и Тимане; они вскрыты глубокими буровыми скважинами на Русской плите, обнажены в естественных выходах по берегам Днестра и Белого моря. Особенно полно они представлены на Южном Урале, где в разрезе позднего Д. общей мощностью 15 км выделены три крупные серии. Уральский разрез, заключающий ряд горизонтов со строматолитами и глауконитовыми прослоями, был взят Н. С. Шатским за тип рифейской группы. В пределах Русской плиты рифей выполняет линейно вытянутые прогибы (авлакогены ), а отложения венда распространены на более обширных площадях, выстилая Московскую синеклизу и др. впадины. Они представлены главным образом песчаниками и алевролитами и содержат прослои тиллитов, отложенных древним ледником. На Сибирской платформе толщи позднего Д. представлены внизу кварцевыми песчаниками и кварцитами, а выше - мощными карбонатными толщами. По составу строматолитов в них намечаются все подразделения рифея. В прогибах, обрамляющих Сибирскую платформу, свиты, сложенные карбонатными породами, чередуются с толщами песчаников и сланцев. В верхах разреза по южному и западному обрамлению Сибирской платформы появляются более крупнообломочные толщи, иногда красноцветные. Многие исследователи рассматривают их как орогенные образования, сравнивая с молассами более поздних геологических периодов.

В складчатых системах Средней Азии, Казахстана, Дальнего Востока также известны образования Д. Известны как отложения раннего докембрия, так и рифейские отложения, сложенные осадочными и вулканогенными геосинклинальными толщами, иногда с пластами строматолитовых известняков, определяющих принадлежность вмещающих отложений к среднему и верхнему рифею и венду. Кое-где из-под рифейских толщ (Киргизский хребет Тянь-Шаня, хребет Улутау в Казахстане, Малый Хинган и др.) выступают глубоко метаморфизованные отложения раннего Д., представленные гнейсами, метаморфическими сланцами, кварцитами и др. породами.

Важнейшие черты палеогеографии достаточно подробно выяснены для позднего протерозоя; в отношении раннего Д. имеются лишь отрывочные сведения. Установлено, что в позднем протерозое платформенные массивы были приподняты и большие площади на них подвергались разрушению; продукты этого разрушения заполняли все понижения внутри платформ и сносились в обрамляющие прогибы, где формировались своеобразные формации, сложенные кварцито-песчаниковыми образованиями. Опущенные части платформ были заняты мелкими морями, в которых отлагались карбонатные породы со строматолитами. На большей части платформ в среднем и позднем рифее господствовал аридный климат. В венде обстановка резко изменилась. Наступило значительное похолодание, и обширные территории были охвачены материковым оледенением. В связи с проявлением байкальской складчатости в геосинклинальных областях возникли поднятия, поставлявшие значительное количество обломочного материала.

Полезные ископаемые. Д. очень богат полезными ископаемыми. К Д. приурочены грандиозные месторождения железных руд (железистые кварциты и джеспилиты), алюминиевого сырья (кианит и силлиманит) и марганцевых руд; с конгломератами Д. связаны крупнейшие месторождения золотых и урановых руд; с основными и ультраосновными породами - крупные месторождения руд меди, никеля и кобальта; с карбонатными породами - свинцово-цинковые месторождения. Пегматиты Д. являются главным источником слюды (мусковита), керамического сырья и редких металлов. С самыми верхними образованиями Д. связаны древнейшие месторождения нефти (Иркутская область РСФСР).

Реферат

Тема: ЭВОЛЮЦИЯ ЖИЗНИ и БИОСФЕРЫ в Докембрийский период

Докембрийский этап развития Земли изучен еще недостаточно полно. Накопленная разрозненная информация о заключенных в геологических отложениях остатках жизни позволяет весь докембрийский период продолжительностью около 4 млрд лет разделить на две эры: более древнюю — архейскую и менее древнюю — протерозойскую. Продолжительность каждой из них около 2 млрд лет. Архей начался со времени образования Земли как планеты 4,6 млрд лет назад и закончился с появлением свободного кислорода в атмосфере 2,5 млрд лет назад. Первые многоклеточные организмы завершили отсчет времени протерозоя около 570 млн лет назад.

Жизнь Земли на протяжении докембрия изучена крайне недостаточно. Это объясняется не только длительным геологическим преобразованием отложений со следами жизни, но и редкостью ее окаменелых остатков. Однако бесспорно, что докембрийский океан стал колыбелью жизни, дав начало образованию и становлению биосферы.

По сравнению с литосферой, гидросферой и атмосферой биосфера — наиболее молодая оболочка Земли. На протяжении всего этапа своего существования она активно взаимодействовала с остальными геосферами планеты. Ее образование связано с возникновением и развитием жизни на Земле.

Для возникновения и начала развития жизни на Земле необходимы были следующие условия: наличие определенных химических веществ, источника энергии, отсутствие газообразного кислорода и неограниченно длительное время Жизнедеятельность любого организма есть прежде всего совокупность различных взаимосвязанных химических процессов. Возникновение Земли и жизни на ней представляло собой единый взаимосвязанный процесс как результат химической эволюции вещества Солнечной системы (Войткевич, 1986).

Возникновение жизни на Земле, согласно гипотезе академика А.И.Опарина, следует рассматривать в качестве закономерной эволюции углеродистых соединений. Уникальная роль углерода в зарождении жизни и ее последующем развитии связана с совокупностью его свойств, которыми не обладает ни один из иных элементов Периодической системы. Атом углерода на внешней орбите имеет всего четыре электрона, хотя на ней может находиться восемь электронов. Таким образом, места "отсутствующих" электронов могут быть заполнены электронами с внешних оболочек четырех других атомов. Эта способность углерода образовывать четыре равнозначные валентные связи с другими атомами создает возможность для построения углеродных скелетов различных типов -линейных, разветвленных и циклических. Между атомами углерода и атомами других элементов также образуются прочные химические связи, которые, однако, могут быть легко разорваны при синтезе и расщеплении органического вещества в мягких условиях, например в ходе физиологических процессов.

Преобладающим элементом в космосе является водород. Вследствие этого и по причине исключительной химической активности углерода соединения водорода и углерода — углеводороды с ближайшими производными очень широко распространены во Вселенной. Данные о химическом составе метеоритов, комет и астероидов свидетельствуют, что образование органических соединений в Сол-вечной системе на ранних стадиях ее развития было типичным и массовым явлением (Войткевич, 1986).

По мнению академика А.И.Опарина, на поверхности формирующейся Земли исходные углеводороды и цианиды (соединения углерода с азотом), а также их ближайшие кислородные, азотистые, сернистые и фосфористые производные, используя внешние источники энергии (ультрафиолетовые лучи, электрические разряды и локальное разогревание), постепенно превращались во все более и более сложные органические вещества: вначале в такие мономеры, как аминокислоты, азотистые основания, сахара, а затем и в их полимеры типа белков и нуклеиновых кислот. Объединение этих полимеров в многомолекулярные системы и последующая эволюция этих систем, основанная на их предбиологическом естественном отборе, послужили тем путем, по которому шло образование пробионтов (предшественников живых организмов) и эобионтов (собственно живых организмов)-родоначальников всего живого на Земле. Таким образом, химическая эволюция явиласьпредпосылкой эволюции биологической еще в космических условиях, на первом этапе образования Земли.

В итоге многочисленных расчетов, основанных на изучении распада радиоактивных веществ и длительности периодов их полураспада, установлено, что планета Земля приобрела размеры, близкие к современным, около 4,6 млрд лет назад. Ее образование - результат взаимодействия процессов конденсации первичного солнечного газово-пылевого вещества и аккреции (увеличения в размерах на периферии) глыб и малых планет, находившихся поблизости. Столкновение с Землей падающего материала, контракция (сжатие) формирующейся Земли и распад радиоактивных элементов, в бодьшом количестве содержавшихся в теле молодой планеты, привели к ее разогреву. Температура поверхности могла достигнуть 1500-1600 °С и обеспечить переплавку и расслоение вещества (Сорохтин, 1974).

Рост температуры привел к плавлению и дифференциации земного вещества на ядро, мантию и кору. Около 4 млрд лет назад внутренняя температура планеты стабилизировалась около ее современного уровня, на отметке 2000-3000 °С, а температура поверхности понизилась до 100 °С и менее. Маломощная атмосфера не могла удерживать тепло планеты, и охлаждение поверхности Земли продолжалось. Первичная кора состояла, по всей видимости, из основных вулканических и изверженных пород и явилась основой образования базальтового слоя Земли. Она представляла собой тонкую оболочку силикатного вещества пемзообразного строения. На ней отсутствовали как материки, так и океанические впадины. К этому времени при усилившемся солнечном ветре планетой была потеряна первичная атмосфера, состоявшая из водорода и гелия.

Трансформация твердого вещества Земли в результате его плавления привела не только к образованию расплавов, но и к выходу на поверхность газов и паров воды. Вероятнее всего, газообразные выбросы по своему химическому составу были сходны с выбросами современных вулканов. Следовательно, вторичная атмосфера состояла в основном из углекислого газа с примесью паров воды, аммиака, метана, сернистого газа, сероводорода, включала "кислые дымы" — аэрозоли соляной и фториевой кислот. Она не содержала кислорода и имела восстановительные, а не окислительные свойства. Постепенное увеличение слоя вторичной атмосферы и накопление в ней углекислого газа и паров воды привело к нарастанию парникового эффекта. Атмосферные осадки, содержащие растворы "кислых дымов", оказывали химическое воздействие на горные породы, вплоть до их окончательного разрушения. В первичных понижениях коры жидкая среда представляла собой сравнительно крепкий раствор соляной и борной кислот.

Газы древней вторичной атмосферы под влиянием солнечной радиации, космического излучения и возможных электрических разрядов в условиях нарастающего парникового эффекта самой атмосферы постепенно распадались. В частности, атмосфера насыщалась азотом, освобождающимся при разрушении аммиака. Химическое выветривание медленно теряло свое главенствующее значение в разрушении горных пород, сменяясь физическим при терригенном осадконакоплении.

Несколько эпох складчатости и тектонико-магмати-ческой активизации усложнили рельеф литосферы, формируя первые возвышенности. В сочетании с метамор-физацией терригенных осадков они положили начало образованию древних щитов будущих континентов.

В таких условиях углеродистые соединения могли эволюционировать в довольно широких масштабах и превращаться в те сложные органические вещества, которые положили начало возникновению жизни на Земле. Своеобразный "естественный отбор" у неживой материи сводился к тому, что некоторые сложные органические молекулы успешнее сопротивлялись разрушительному воздействию ультрафиолетовых лучей и разогреву, чем простые, с течением времени первобытный океан превратился в раствор различных органических соединений - "питательный бульон" - среду, благоприятную для Образования новых, более сложных органических молекул.

Первые формы жизни на планете, вероятнее всего, представляли собой биохимически простые одноклеточные или неклеточные шарообразные структуры, которые зависели от внешних источников питания. Древнейшая жизнь, вероятно, существовала в виде гетеротрофных, питающихся органическим веществом бактерий, размеры которых были соизмеримы с размерами органических молекул. Пищу и энергию они получали от переработки органического материала, образовавшегося раньше в результате абиогенного синтеза, т.е. возникновения биополимеров, "способных к обмену веществ.

Происхождение жизни неразрывно связано с анаэробной (бескислородной) водной средой океана, которая защищала древнейшие организмы от губительного действия жесткой солнечной и космической радиации, а также поддерживала достаточно узкие по параметрам и сравнительно постоянные температурные условия.

Первичные примитивные клетки, находясь в морской среде, имели теснейший контакт со всеми химическими элементами Периодической таблицы. Эти организмы в процессе жизнедеятельности "выбирали" не все элементы, а только те, которые благоприятствовали их росту и совершенствованию физиологических процессов. Таким образом, согласно гипотезе В.И.Вернадского (1940) о происхождении биосферы, возникновение жизни положило начало биосфере, которая возникла как сложная саморегулирующая планетарная система. Первое появление жизни при создании биосферы должно было произойти не в виде отдельных каких-либо организмов, а в виде их сообществ (биоценозов).

Центральной и пока нерешенной проблемой происхождения жизни на Земле является реконструкция эволюции механизма наследственности. Согласно гипотезе А.И.Опарина, одновременно с "естественным отбором" у неживой материи, приводившим к преимущественному образованию сложных органических соединений, мог

проходить процесс слияния этих молекул в целые молекулярные системы, насчитывающие тысячи и миллионы молекул. Эти коацерватные "капли " имели оболочку, защищавшую их от окружающей водной среды. Они могли разрушаться, образовываться вновь и при достижении определенных размеров делиться. Коацерваты обладали способностью избирательно поглощать из окружающего раствора необходимые им вещества и избавляться от ненужных. Сохранялись лишь те из них, которые при делении не теряли в дочерних каплях свои признаки, химический состав и структуру, приобретая способность к самовоспроизводству. В результате такого естественного отбора и длительной эволюции пробионты превратились в сложные биологические системы, какими являются живые организмы. Однако эта гипотеза А.И.Опарина не объясняет возникновение системы передачи наследственной информации (генетического кода) от предков к потомкам, которая стала одним из основных свойств живого. Поэтому его представление о том, что коацерваты явились предшественниками жизни, вызывает дискуссию.

Существует предположение, что химическая эволюция космической туманности могла привести к образованию молекулы ДНК - носителя генетической информации. Возможно также, что при каких-то исключительно благоприятных условиях подобный синтез мог произойти на Земле. Будущие космохимические, биохимические и генетические исследования позволят ответить на этот важнейший вопрос о переходе неживого вещества в состояние живой материи.

На протяжении всей истории становления биосферы ее самыми влиятельными геохимическими агентами были микроорганизмы (бактерии и синезеленые водоросли), необычайно способные адаптироваться к изменяющимся условиям и всегда невероятно многочисленные. За всю последующую геологическую историю Земли они мало изменялись, вероятно, по причине своей огромной экологической устойчивости.

Первичные гетеротрофные организмы, обладающие свойствами живого, быстро размножились и достигли максимально возможной биомассы, исчерпав при этом свою питательную базу. Они должны были вымереть или перейти на новый источник питания. По-видимому, определенную роль при этом сыграл отбор тех архаичных организмов, которые, находясь в водной среде, насыщенной различными газами, в том числе и углекислым, "научились" синтезировать органическое вещество при участии солнечной энергии. Таким образом была "решена" проблема питания, причем для производства пищи на первом этапе использовалось ультрафиолетовое излучение Солнца. Этот новый способ питания способствовал быстрому расселению организмов у поверхности древнейших водоемов, с появлением свободного кислорода как побочного продукта фотосинтетического процесса, положившего начало образования озонового экрана Земли, первые автотрофы начали использовать излучение в видимой части солнечного спектра, в пepвую очередь его наиболее энергонасыщенные красные лучи. По этой причине синтезирующий пигмент приповерхностноводных водорослей приобрел зеленую окраску.

До появления фотосинтезирующих организмов атмосфера Земли формировалась в основном из вулканических газов, включая сероводород, который поглощался водной средой. Появлявшееся в воде, обогащенной сероводородом, незначительное количество свободного кислорода использовалось первыми хемосинтезирующими организмами и поглощалось минеральными недоокисленными веществами океана, а также первичной литосферы. Кислород мало накапливался в атмосфере, так как прежде всего реагировал с железом, растворенным в воде. При этом окислы железа осаждались, образуя полосчатые красноцветные железистые формации. Только после того, как океан освободился от железа и других поливалентных металлов, содержание кислорода в атмосфере начало возрастать.

С переходом на фототрофное питание увеличивалась численность первых фотосинтезирующих организмов - зеленых и красных водорослей. Борьба за существование шла между теми из них, что находились в освещенной части водной среды, и появившимися организмами, поглощавшими кислород при хемосинтезе. Часть кислорода использовалась для разложения органических остатков. В этой борьбе победу одержали фотосинтезирующие организмы, которые оттеснили анаэробные хемосинтезирующие автотрофы в зону образования глубоководных илов. В результате стало возможным превращение бескислородной атмосферы в кислородную. Переход на аэробное дыхание сделал возможным появление сложных много- клеточных организмов.

Образование озонового экрана в конечном итоге привело к зарождению высокоорганизованной жизни на Земле, которая освоила всю поверхность планеты. Если считать самым важным явлением в эволюции биосферы возникновение жизни, то следующим по значимости событием называют появление фотосинтезирующих организмов.

Весь геологический период развития Земли от ее образования до появления в атмосфере свободного кислорода получил название архея. Его продолжительность — около двух миллиардов лет - составляет половину геологической жизни Земли (4,6 млрд лет) и говорит о чрезвычайно медленном процессе превращения исходной космической материи в живое вещество. Уже на этом этапе становления биосферы параллельно и взаимозависимо развивались все геосферы (табл. 2.1), хотя сама биосфера была ограничена средой архейского мелководного теплого океана.

Следующий этап эволюции — создание многоклеточных организмов, для чего потребовалось почти 2 млрд лет протерозоя.

Протерозой делится на нижний (2,6-1,9 млрд лет назад), средний (1,9—1,7 млрд лет) и верхний — рифей (1,7-0,6 млрд лет назад). Окончание рифея продолжительностью около 110 млн лет получило название венда.

В течение всей протерозойской эры литосфера пережила несколько эпох складчатости и магматической активизации, завершивших формирование гранито-метамор-фического фундамента древних платформ.

В нижнем и среднем протерозое постепенно увеличивалась площадь континентов. В физическом выветривании, которое стало господствуюпщм в геологическом осадконакоплении, главная роль принадлежала атмосферным осадкам. Плащевые потоки воды интенсивно разрушали и смывали в океан горные породы. Особенно значительное увеличение площади континентов произошло в рифее. В результате не менее четырех тектонико-магматических эпох в древних геосинклинальных областях возникли новые горные системы. Разрозненные континентальные массивы слились в единый суперконтинент. Не исключено, что в начале верхнего протерозоя площадь материков достигла наибольшей величины за всю геологическую историю Земли. Ранний суперконтинент просуществовал до конца венда, когда начался его раскол.

В протерозое продолжал существовать мелководный теплый океан с обилием вулканических островов. Объем воды в нем постепенно увеличивался.

Продолжалось нарастание слоя атмосферы вследствие распада ювенильных газов. Увеличивалось содержание кислорода, которое в атмосфере рифея достигло 0,01 % от современного уровня. Некоторые геологи считают, что образование кислородной атмосферы происходило даже более быстрыми темпами.

Широтная климатическая зональность, вероятно, была выражена более четко, чем в последующее геологическое время (Монин, Шишков, 1979). Это можно объяснить большей, чем сейчас, скоростью вращения земного шара и меньшим объемом воздушной оболочки. Увеличение массы атмосферы и связанное с этим усиление воздухообмена, парниковый эффект, тепловая инерция, увеличение наклона плоскости земного экватора и плоскости эклиптики, а также замедление суточного вращения планеты к концу протерозоя постепенно "размыли" климатическую зональность.

На общем фоне климатической неоднородности протерозоя произошло несколько ледниковых эпох, особенно в рифее.

В конце нижнего протерозоя (2,0-1,9 млрд лет назад), вероятно, появились эукариоты - первые фотоавтотроф-ные организмы, в клетках которых уже имелось ядро. Вопрос об их происхождении окончательно не решен. Существуют две основные теории возникновения и последующего развития эукариот — симбиотическая и не-симбиотическая. Согласно первой, происхождение эукариот связано с проникновением одного прокариотного безъядерного организма в другой.

Вторая теория предполагает их происхождение от предков, общих с синезеле-ными водорослями, с ядром в клетке живые организмы приобрели способность к новым важным процессам: митозу, мейозу и генетической рекомбинации. От первых эукариотберут начало жгутиконосцы, или биченосцы.Они представляют собойобширную и разнообразную группу простейшихорганизмов, широкораспространенную в природе и в наше время. В этих клетках имеется одно или несколько ядер, им присуще все разнообразие питания, свойственное растительным и животным организмам. В этом отношении показательны многочисленные представители рода Euglena(рис.1). Многие виды евглен изменяют характер питания в зависимости от условий обитания. При хорошей ситуации становятся бесцветными и усваивают из воды готовые органические вещества.

Эволюция автотрофных жгутиконосцев с зеленым пигментом -хлорофиллом привела к образованию зеленых водорослей, из которых, в свою очередь, возникли высшие наземные растения. Развитие у жгутиконосцев, относящихся к гетеротрофным эукариотам, двигательного аппарата - жгутиков - послужило одним из важнейших моментов в становлении органического мира на Земле

Литература

1. Киселев В.Н. Основы экологии: Учеб. пособие.- Мн.: Універсітзцкае, 1998.- 367 с.

2. Запольський А.K., Салюк А.І.Основи екології: Підручник / За ред. К. М. Ситника. 2-ге вид., допов. і переробл. K .: Вища шк., 2004. — 382 с

Несмотря на то, что о тех далеких временах известно очень мало, многие из удивительных созданий, населявших Землю в ту эпоху, оживают в умелых руках палеонтологов и биологов.

От созданий никаких скелетов, конечно, не сохранилось. Большей частью потому, что, собственно, и скелетов-то никаких животные тогда еще не имели. В кембрии, впрочем, костный панцирь и зачатки хорды они все-таки обрели, но за давностью времен не стоит рассчитывать на их сохранность. Всю информацию о животных вендского периода (докембрия, или, как его еще называют, эдиакария, длившегося примерно с 635 по 541 ±1 млн лет назад) и кембрия (начавшегося ориентировочно 541,0 ±1 млн лет назад и закончившегося 485,4 ±1,9 млн лет назад) ученые получают по отпечаткам.

Одним из главных источников этих отпечатков на сегодняшний день являются сланцы Бёрджес, расположенные в Канаде.

Это мягкотелое животное вендского периода имело цельную голову в форме полумесяца, похожего на щит трилобита, а также длинное тело, которое состояло из одинаковых сегментов и напоминает тело многощетинковых червей.

Еще одно животное эдиакария, довольно сильно напоминающее вышеупомянутую сприггину. Характерной особенностью многих вендских организмов является то, что членики их тел как бы сдвинуты друг относительно друга (дикинсония, чарния и др.) вопреки всем законам билатеральной симметрии (симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны; к билатеральной симметрии относятся тела человека и большинства современных животных – NS). Этот факт ставит ученых в тупик, поскольку ранее считалось, что предками кольчатых червей являются именно вендские животные. Сегодня эта идея подвергается сомнению, что очень озадачивает исследователей, пытающихся проследить происхождение одних видов от других.

Еще одна «жительница» вендского периода — дикинсония

Эдиакарские животные — ирании (показаны синим), внизу — трехлучевые альбумаресы

А вот это существо кембрийского периода представилось палеонтологам настолько удивительным, что им на секунду показалось, будто они видят галлюцинации. Отсюда и название. Ведь, если судить по сохранившимся отпечаткам этого животного, логично предположить, что вместо ног у него были шипы (причем по два-три в одном сегменте), а на спине располагался ряд каких-то мягких отростков! Такое едва ли возможно с точки зрения биологической науки. К счастью, позже были найдены более четкие отпечатки, на которых видно, что галлюцигения попросту была перевернута вверх тормашками, а второй ряд мягких ее ножек не отразился на отпечатке. Таким образом, галлюцигения выглядела так:

Червеобразное животное кембрия. Возможно, питалась губками, поскольку ее останки часто находят вместе с останками губок.

Представитель нового поколения многоклеточных организмов, род ископаемых мягкотелых чешуйчатых животных. Предполагается, что виваксия жила с конца нижнего кембрия до среднего кембрия.

Примитивные хордовые животные длиной всего около 5 см, обладавшие, быть может, одним из первых в истории позвоночников. За миллионы лет эта простая структура превратится в позвоночник, без которого мы не смогли бы ни стоять, ни ходить. Кстати, появление скелета как такового, а также более совершенных глаз – одни из важнейших факторов, характеризующих кембрийский взрыв.

Еще один важнейший представитель кембрия и последующих геологических эпох. Это вымерший класс морских членистоногих. Быть может, один из самых многочисленных и самых живучих видов существ, когда-либо живших на Земле. Трилобиты были не очень симпатичны и напоминали современных мокриц, только гораздо тверже и больше – длина их тела могла достигать 90 см. На сегодняшний день известно более 10 тыс. ископаемых видов класса трилобитов.

С древнегреческого класс динокарид (Dinocarida), к которому и относится аномалокарис, переводится как «необычная» или «ужасная» креветка». Наверное, самое удивительное животное кембрийских морей. Аномалокариса, хищника рода ископаемых членистоногих, нашли не сразу – сначала обнаружили его части и долго разводили руками над столь удивительным животным. Так, отпечаток зубастого рта аномалокариса посчитали странной медузой с отверстием посередине. Конечности, которыми он хватал жертву, – креветками. Картина прояснилась, когда был найден полный отпечаток животного.

Аномалокарисы обитали в морях, плавали с помощью гибких боковых лопастей. Это одни из самых крупных организмов, известных в кембрийских отложениях. Длина их тела могла достигать 60 см, а иногда и 2 м.

Не менее удивительные создания, похожие на аномалокариса. Как и аномалокарис, все они представители вымершего класса динокарид. Но вместо хватательных отростков-«креветок» у опабинии – складной хоботок и пять глаз.

Марелла и вовсе похожа на чудовище из фильмов ужасов, а Hurdia victoria входила в число крупнейших хищников кембрийского периода, достигая в длину 20 см. Рот этих существ обрамляли 32 пластины, несущие по два-три зуба.

Вообще как уже где-то писали, докембрий отлично подошёл бы любителям пива из-за обилия закуски к оному. Шутку как всегда поняли не все и стали требовать в барах свежих трилобитов

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели