Бесконечно малые последовательности и функции. Примеры

Бесконечно малые последовательности и функции. Примеры

05.07.2020

Сравнение бесконечно малых функций, эквивалентные функции

Бесконечно малые и бесконечно большие величины.

О.1. Последовательность называется бесконечно большой, если для любого положительного числа А (сколь большим бы мы его не взяли) существует номер N такой, что при n›N выполняется неравенство | х п | › А, т.е. какое бы большое число А мы не взяли, найдется такой номер, начиная с которого все члены последовательности окажутся больше А.

Определение 6 . Последовательность {α п } называется бесконечно малой, если для любого положительного числа ε (сколь малым бы мы его не взяли) существует номер N такой, что при n›N выполняется неравенство | α п | ‹ε.

1. Последовательность {п} является бесконечно большой.

2. Последовательность {} является бесконечно малой.

Теорема 1. Если {х п } - бесконечно большая последовательность и все ее члены отличны от нуля, х п ≠0, то последовательность {α п }=- бесконечно малая, и, обратно, если {α п } бесконечно малая последовательность, α п ≠0, то последовательность {х п }=бесконечно большая.

Сформулируем основные свойства бесконечно малых последовательностей в виде теорем.

Теорема 2. Сумма и разность двух бесконечно малых последовательностей есть бесконечно малые последовательности.

Пример 2. Последовательность с общим членом бесконечно малая, т.к. т.е заданная последовательность является суммой бесконечно малых последовательностей и и поэтому является бесконечно малой.

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 3. Произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Следствие. Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Замечание. Частное двух бесконечно малых последовательностей может быть любой последовательностью и может не иметь смысла.

Например, если , , то все элементы последовательности равны 1 и данная последовательность является ограниченной. Если , , то последовательность - бесконечно большая, и наоборот, если , а , то - бесконечно малая последовательность. Если начиная с некоторого номера элементы последовательности равны нулю, то последовательность не имеет смысла.

Теорема 4. Произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность.

Пример 3. Последовательность бесконечно малая, т.к. и последовательность {}- бесконечно малая, последовательность - ограничена, т.к. ‹ 1. Следовательно, - бесконечно малая последовательность.

Следствие. Произведение бесконечно малой последовательности на число есть бесконечно малая последовательность.

Определение. Функция f(x) называется бесконечно большой при , если для любого, даже сколь угодно большого положительного числа , найдется такое положительное число (зависящее от М, δ=δ(М)), что для всех х, не равных х 0 и удовлетворяющих условию , выполняется неравенство

Записывают: или при .

Например, функция есть бесконечно большая функция при ; функция при .

Если f(x) стремится к бесконечности при и принимает лишь положительные значения, то пишут , если лишь отрицательные значения, то .

Определение. Функция f(x), заданная на всей числовой прямой, называется бесконечно большой при , если для любого положительного числа , найдется такое положительное число (зависящее от М, N=N(М)), что при всех х, удовлетворяющих условию , выполняется неравенство

Например, функция у=2 х есть бесконечно большая функция при ; функция является бесконечно большой функцией при .

Свойства бесконечно больших функций:

1. Произведение б.б.ф. на функцию, предел которой отличен от нуля, есть б.б.ф.

2. Сумма б.б.ф. и ограниченной функции есть б.б.ф.

3. Частное от деления б.б.ф. на функцию, имеющую предел, есть б.б.ф.

Например, если функция f(x)=tgx есть б.б.ф. при , функция φ(х)=4х-3 при имеет предел (2π-3) отличный от нуля, а функция ψ(х)=sinx – ограниченная функция, то

f(x) φ(х)=(4х-3) tgx; f(x) + ψ(х)= tgx + sinx; есть бесконечно большие функции при .

Определение. Функция f(x) называется бесконечно малой при , если

По определению предела функции равенство (1) означает: для любого, даже сколь угодно малого положительного числа , найдется такое положительное число (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющих условию , выполняется неравенство

Теорема. Для выполнения равенства необходимо и достаточно, чтобы функция была бесконечно малой при . При этом функция может быть представлена в виде .

Аналогично определяется б.м.ф. при ,- 0, , во всех случаях f(x)0.

Бесконечно малые функции часто называют бесконечно малыми величинами или бесконечно малыми; обозначают обычно греческими буквами α, β и т.д.

Например, у=х 2 при х→0; у=х-2 при х→2; у=sinx при х→πк, - бесконечно малые функции.

Свойства бесконечно малых функций:

1. Сумма конечного числа бесконечно малых функций есть величина бесконечно малая;

2. Произведение конечного числа бесконечно малых функций, а также бесконечно малой функции на ограниченную функция, есть величина бесконечно малая;

3. Частное от деления бесконечно малой функции на функцию, предел которой не равен нолю, если величина бесконечно малая.

Рассмотрим последнее свойство при если функции и являются бесконечно малыми (Сравнение бесконечно малых функций):

1). Если , то называется бесконечно малой, более высокого порядка малости, чем .

Пример . При х→2 функция (х - 2) 3 бесконечно малая более высокого порядка, чем (х -2), так как .

2). Если , то и называются бесконечно малыми одного порядка (имеют одинаковую скорость стремления к нолю);

Пример . При х→0 функции 5х 2 и х 2 являются бесконечно малыми одного порядка, так как .

3). Если ,то и называются эквивалентными бесконечно малыми, обозначаются ~., то

Связь между бесконечно малыми и бесконечно большими функциями: функция обратная бесконечно малой является бесконечно большой (и наоборот), т.е. если - бесконечно малая функция, то - бесконечно большая.

Понятие бесконечно малых и бесконечно больших величин играет важную роль в математическом анализе. Многие задачи просто и легко решаются используя понятия бесконечно больших и малых величин.

Бесконечно малые .

Переменная называется бесконечно малой, если для любогосуществует такое значение, что каждое следующии за ним значениебудет по абсолютной величине меньше.

Если -бесконечно малая то говорят, что стремится к нулю, и пишут:.

Бесконечно большие .

Переменная x называется бесконечно большой , если для всякого положительного числа c существует такое значение , что каждое следующее за нимx будет по абсолютной величине больше . Пишут:

Величина, обратная к бесконечно большой , есть величина бесконечно малая , и обратно.

10. Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

11. Первый замечательный предел

Доказательство

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности ().

Точка K - точка пересечения луча с окружностью, а точка L - с касательной к единичной окружности в точке . Точка H - проекция точки K на ось OX .

Очевидно, что:

(где - площадь сектора )

Подставляя в (1), получим:

Так как при :

Умножаем на :

Перейдём к пределу:

Найдём левый односторонний предел:

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

12-13. Второй замечательный предел

или

Доказательство второго замечательного предела:

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где - это целая часть x.

Отсюда следует: , поэтому

Если , то . Поэтому, согласно пределу , имеем:

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку , тогда

Из двух этих случаев вытекает, что для вещественного Х

14. Частные производные.

Пусть z=f (x,y ) . Зафиксируем какую-либо точку (x,y ), а затем, не меняя закрепленного значения аргумента y , придадим аргументу x приращение . Тогда z получит приращение, которое называется частным приращением z по x и обозначается и определяется формулой .

Аналогично, если x сохраняет постоянное значение, а y получает приращение , то z получает частное приращение z по y ,.

Определение . Частной производной по x от функции z=f (x,y ) называется предел отношения частного приращения по x к приращению при стремлении к нулю, т.е.

Частная производная обозначается одним из символов.

Аналогично определяется частная производная по y :

.

Таким образом, частные производные функции двух переменных вычисляются по тем же правилам, что и производные функции одного переменного.

Пример . Найти частные производные функции z=x 2 e x-2y .

Частные производные функции любого числа переменных определяются аналогично.

Единственность предела и ограниченность сходящейся числовой последовательности

Определение 1 . Числовая последовательность (1) называется ограниченной, если множество членов этой последовательности образует ограниченное множество.

В этом случае числовую последовательность (1) мы будем называть ограниченной величиной .

Определение 2 . Числовая последовательность (1) сходится и имеет предел (Возможно использование записи ), если .

Давайте повторим это определение, используя в большей степени русский язык. Предел числовой последовательности существует и равен некоторому числу, если, начиная с некоторого номера, все члены последовательности удалены от этого предельного числа менее, чем любое, наперед заданное, сколь угодно малое положительное число. Можно это же самое сказать другими словами. Число будет пределом числовой последовательности (1) тогда и только тогда, когда для каждой -окрестности точки все члены последовательности, начиная с некоторого номера, лежат в этой –окрестности. Заметим, что интервал называется -окрестностью точки .

Теорема 1 . Если предел числовой последовательности существует, то он единственный.

Доказательство . Доказательство теоремы проведем «методом от противного». Предположим, что теорема неверна и существует, как минимум, 2 числа и (), для которых выполнены условия определения 2. В этом определении возьмем . Тогда, после номера члены последовательности отличаются от числа меньше чем на , а после номера члены последовательности отличаются от числа меньше чем на . Покажем, что этого не может быть. В самом деле, при выполнены соотношения , , откуда для этих имеем . Теорема доказана.

Теорема 2 . Если числовая последовательность имеет предел, то эта числовая последовательность ограничена.

Доказательство . Доказательство будет носить конструктивный характер. Возьмем и найдем соответствующее . Разобьем последовательность на 2 части: первые членов и остальные члены последовательности. Первая группа состоит из конечного числа членов и поэтому ограничена. Вторая группа состоит из чисел, удаленных от предельного значения не больше чем на 1, и поэтому также ограничена. Объединение двух ограниченных множеств есть множество ограниченное. Теорема доказана.



Бесконечно малые величины и их свойства

Определение 3 . Числовая последовательность называется бесконечно малой величиной , если она имеет предел, равный 0.

Для бесконечно малых величин используются обозначение б. м .

Пусть заданы числовые последовательности и . Числовая последовательность с общим членом , называется суммой этих числовых последовательностей. Числовая последовательность с общим членом , называется суммой этих числовых последовательностей. Числовая последовательность с общим членом , называется суммой этих числовых последовательностей.

Теорема 3 . Сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

Доказательство . Достаточно доказать утверждение для суммы двух б. м. Пусть числовые последовательности и являются бесконечно малыми величинами, т. е. пределы этих последовательностей равны 0. Данный факт означает следующее. Если задано произвольное, скроль угодно малое положительное число , то для числа и числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . По той же причине для этого же числа и числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . Возьмем число , тогда при справедливы соотношения . Итак, для произвольного мы нашли номер , такой что при выполнено . Следовательно, предел последовательности , равен 0, и она является бесконечно малой величиной. Теорема доказана.

Теорема 4 . Произведение бесконечно малой величины на ограниченную величину есть величина бесконечно малая.

Доказательство . Пусть числовая последовательность является бесконечно малой величиной, а числовая последовательность является ограниченной величиной. Это означает что, с одной стороны, , с другой стороны, существует число такое, что для каждого выполнено условие . Пусть теперь задано произвольное, скроль угодно малое положительное число . Рассмотрим числа , для него в числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . При этом будет выполнено условие , что и означает, что произведение этих двух величин – бесконечно малой и ограниченной есть величина бесконечно малая. Теорема доказана.

Свойства пределов

А как конкретно происходит вычисление пределов, в данном случае числовых последовательностей? Мы стараемся представить величину, предел которой надо найти, в виде суммы, разности, произведения, частного более простых величин, предел которых легко найти. Для обоснования такого подхода надо сформулировать и доказать свойства пределов.

Теорема 5 . Числовая последовательность имеет предел, равный тогда и только тогда, когда последовательность , является бесконечно малой величиной.

Доказательство . Пусть , т.е. при для каждого при выполнено неравенство (). Но это неравенство равносильно тому, что , т. е. последовательность , имеет предел 0, т.е. является бесконечно малой величиной. Теорема доказана. , где - б. м. Отсюда следует, что . В последней скобке сумма двух бесконечно малых величин есть величина б. м. Поэтому представляется в виде суммы и бесконечно малой величины . В силу теоремы 5 это означает, что . Первое утверждение теоремы доказана. Формула доказывается совершенно аналогично. Рассмотрим теперь формулу и используем для преобразования левой части те же обозначения. Поэтому …

Функция называется бесконечно малой при
или при
, если
или
.

Например: функция
бесконечно малая при
; функция
бесконечно малая при
.

Замечание 1. Никакую функцию без указания направления изменения аргумента бесконечно малой назвать нельзя. Так, функция
при
является бесконечно малой, а при
она уже не является бесконечно малой (
).

Замечание 2. Из определения предела функции в точке, для бесконечно малых функций выполняется неравенство
.Этим фактом мы в дальнейшем будем неоднократно пользоваться.

Установим некоторые важные свойства бесконечно малых функций.

Теорема (о связи функции, её предела и бесконечно малой): Если функция
может быть представлена в виде суммы постоянного числаА и бесконечно малой функции
при
, то число

Доказательство:

Из условия теоремы следует, что функция
.

Выразим отсюда
:
. Поскольку функция
бесконечно малая, для неё справедливо неравенство
, тогда для выражения (
) также выполняется неравенство

А это значит, что
.

Теорема (обратная): если
, то функция
может быть представлена в виде суммы числаА и бесконечно малой при
функции
, т.е.
.

Доказательство:

Так как
, то для
выполняется неравенство
(*) Рассмотрим функцию
как единую и неравенство (*) перепишем в виде

Из последнего неравенства следует, что величина (
) является бесконечно малой при
. Обозначим её
.

Откуда
. Теорема доказана.

Теорема 1 . Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.

Доказательство:

Проведём доказательство для двух слагаемых, так как для любого конечного числа слагаемых оно приводится аналогично.

Пусть
и
бесконечно малые при
функции и
– сумма этих функций. Докажем, что для
, существует такое
, что для всехх , удовлетворяющих неравенству
, выполняется неравенство
.

Так как функция
бесконечно малая функция,
, что для всех
выполняется неравенство
.

Так как функция
бесконечно малая функция,
, а следовательно существует такое, что для всех
выполняется неравенство
.

Возьмём равным меньшему из чисели, тогда в–окрестности точкиа будут выполняться неравенства
,
.

Составим модуль функции
и оценим его значение.

То есть
, тогда функция бесконечно малая, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции
при
на ограниченную функцию
есть бесконечно малая функция.

Доказательство:

Так как функция
ограниченная, то существует такое положительное число
, что для всехвыполняется неравенство
.

Так как функция
бесконечно малая при
, то существует такая–окрестность точки, что для всехих этой окрестности выполняется неравенство
.

Рассмотрим функцию
и оценим её модуль

Итак
, а тогда
– бесконечно малая.

Теорема доказана.

Теоремы о пределах.

Теорема 1. Предел алгебраической суммы конечного числа функций равен алгебраической сумме пределов этих функций

Доказательство:

Для доказательства достаточно рассмотреть две функции, это не нарушит общности рассуждений.

Пусть
,
.

По теореме о связи функции, её предела и бесконечно малой, функции
и
можно представить в виде
где
и
– бесконечно малые при
.

Найдём сумму функций
и

Величина
есть постоянная величина,
– величина бесконечно малая. Таким образом, функция
представлена в виде суммы постоянной величины и бесконечно малой функции.

Тогда число
является пределом функции
, т.е.

Теорема доказана.

Теорема 2 . Предел произведения конечного числа функций равен произведению пределов этих функций

Доказательство:

Не нарушая общности рассуждений, проведём доказательство для двух функций
и
.

Пусть , тогда
,

Найдём произведение функций
и

Величина
есть постоянная величина,бесконечно малая функция. Следовательно, число
является пределом функции
, то есть справедливо равенство

Следствие:
.

Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля

.

Доказательство: Пусть
,

Тогда
,
.

Найдём частное и проделаем над ним некоторые тождественные преобразования

Величина постоянная, дробь
бесконечно малая. Следовательно, функцияпредставлена в виде суммы постоянного числа и бесконечно малой функции.

Тогда
.

Замечание. Теоремы 1–3 доказаны для случая
. Однако, они могут быть применимы при
, поскольку доказательство теорем в этом случае проводится аналогично.

Например. Найти пределы:


Первый и второй замечательные пределы.

Функция не определена при
. Однако её значения в окрестности точки нуль существуют. Поэтому можно рассматривать предел этой функции при
. Этот предел носит названиепервого замечательного предела .

Он имеет вид:
.

Например . Найти пределы: 1.
. Обозначают
, если
, то
.
; 2.
. Преобразуем данное выражение так, чтобы предел свёлся к первому замечательному пределу.
; 3..

Рассмотрим переменную величину вида
, в которойпринимает значения натуральных чисел в порядке их возрастания. Дадимразличные значения: если





Давая следующие значения из множества
, нетрудно увидеть, что выражение
при
будет
. Более того, доказывается, что
имеет предел. Этот предел обозначается буквой:
.

Число иррациональное:
.

Теперь рассмотрим предел функции
при
. Этот предел называетсявторым замечательным пределом

Он имеет вид
.

Например.

а)
. Выражение
заменим произведениемодинаковых сомножителей
, применим теорему о пределе произведения и второй замечательный предел; б)
. Положим
, тогда
,
.

Второй замечательный предел используется взадаче о непрерывном начислении процентов

При начислении денежных доходов по вкладам часто пользуются формулой сложных процентов, которая имеет вид:

,

где - первоначальный вклад,

- ежегодный банковский процент,

- число начислений процентов в год,

- время, в годах.

Однако, в теоретических исследованиях при обосновании инвестиционных решений чаще пользуются формулой экспоненциального (показательного) закона роста

.

Формула показательного закона роста получена как результат применения второго замечательного предела к формуле сложных процентов

Непрерывность функций.

Рассмотрим функцию
определённую в некоторой точкеи некоторой окрестности точки. Пусть в указанной точке функция имеет значение
.

Определение 1. Функция
называется непрерывной в точке , если она определена в окрестности точки, включая саму точку и
.

Определение непрерывности можно сформулировать иначе.

Пусть функция
определена при некотором значении,
. Если аргументудать приращение
, то функция получит приращение

Пусть функция в точке непрерывна (по первому определению непрерывности функции в точке),

То есть, если функция непрерывна в точке , то бесконечно малому приращению аргумента
в этой точке соответствует бесконечно малое приращение функции.

Справедливо и обратное предложение: если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то функция непрерывна.

Определение 2. Функция
называется непрерывной при
(в точке), если она определена в этой точке и некоторой её окрестности и если
.

Учитывая первое и второе определение непрерывности функции в точке можно получить следующее утверждение:

или
, но
, тогда
.

Следовательно, для того чтобы найти предел непрерывной функции при
достаточно в аналитическое выражение функции вместо аргументаподставить его значение.

Определение 3. Функция, непрерывная в каждой точке некоторой области называется непрерывной в этой области.

Например:

Пример 1. Доказать, что функция
непрерывна во всех точках области определения.

Воспользуемся вторым определением непрерывности функции в точке. Для этого возьмём любое значение аргумента и дадим ему приращение
. Найдём соответствующее приращение функции

Пример 2. Доказать, что функция
непрерывна во всех точкахиз
.

Дадим аргументу приращение
, тогда функция получит приращение

Найдём так как функция
, то есть ограничена.

Аналогично можно доказать, что все основные элементарные функции непрерывны во всех точках области их определения, то есть область определения элементарной функции совпадает с областью её непрерывности.

Определение 4. Если функция
непрерывна в каждой точке некоторого интервала
, то говорят, что функция непрерывна на этом интервале.

Бесконечно малые функции

Функцию %%f(x)%% называют бесконечно малой (б.м.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента предел функции равен нулю.

Понятие б.м. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.м. функции при %%a \to a + 0%% и при %%a \to a - 0%%. Обычно б.м. функции обозначают первыми буквами греческого алфавита %%\alpha, \beta, \gamma, \ldots%%

Примеры

  1. Функция %%f(x) = x%% является б.м. при %%x \to 0%%, поскольку ее предел в точке %%a = 0%% равен нулю. Согласно теореме о связи двустороннего предела с односторонними эта функция — б.м. как при %%x \to +0%%, так и при %%x \to -0%%.
  2. Функция %%f(x) = 1/{x^2}%% — б.м. при %%x \to \infty%% (а также при %%x \to +\infty%% и при %%x \to -\infty%%).

Отличное от нуля постоянное число, сколь бы оно ни было мало по абсолютному значению, не является б.м. функцией. Для постоянных чисел исключение составляет лишь нуль, поскольку функция %%f(x) \equiv 0%% имеет нулевой предел.

Теорема

Функция %%f(x)%% имеет в точке %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой конечный предел, равный числу %%b%%, тогда и только тогда, когда эта функция равна сумме этого числа %%b%% и б.м. функции %%\alpha(x)%% при %%x \to a%%, или $$ \exists~\lim\limits_{x \to a}{f(x)} = b \in \mathbb{R} \Leftrightarrow \left(f(x) = b + \alpha(x)\right) \land \left(\lim\limits_{x \to a}{\alpha(x) = 0}\right). $$

Свойства бесконечно малых функций

По правилам предельного перехода при %%c_k = 1~ \forall k = \overline{1, m}, m \in \mathbb{N}%%, следуют утверждения:

  1. Сумма конечного числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  2. Произведение любого числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  3. Произведение б.м. функций при %%x \to a%% и функции, ограниченной в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки а, есть б.м. при %%x \to a%% функция.

    Ясно, что произведение постоянной функции и б.м. при %%x \to a%% есть б.м. функция при %%x \to a%%.

Эквивалентные бесконечно малые функции

Бесконечно малые функции %%\alpha(x), \beta(x)%% при %%x \to a%% называются эквивалентными и пишутся %%\alpha(x) \sim \beta(x)%%, если

$$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\beta(x)}{\alpha(x)}} = 1. $$

Теормема о замене б.м. функций эквивалентными

Пусть %%\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)%% — б.м. функции при %%x \to a%%, причем %%\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)%%, тогда $$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\alpha_1(x)}{\beta_1(x)}}. $$

Эквивалентные б.м. функции.

Пусть %%\alpha(x)%% — б.м. функция при %%x \to a%%, тогда

  1. %%\sin(\alpha(x)) \sim \alpha(x)%%
  2. %%\displaystyle 1 - \cos(\alpha(x)) \sim \frac{\alpha^2(x)}{2}%%
  3. %%\tan \alpha(x) \sim \alpha(x)%%
  4. %%\arcsin\alpha(x) \sim \alpha(x)%%
  5. %%\arctan\alpha(x) \sim \alpha(x)%%
  6. %%\ln(1 + \alpha(x)) \sim \alpha(x)%%
  7. %%\displaystyle\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}%%
  8. %%\displaystyle a^{\alpha(x)} - 1 \sim \alpha(x) \ln(a)%%

Пример

$$ \begin{array}{ll} \lim\limits_{x \to 0}{ \frac{\ln\cos x}{\sqrt{1 + x^2} - 1}} & = \lim\limits_{x \to 0}{\frac{\ln(1 + (\cos x - 1))}{\frac{x^2}{4}}} = \\ & = \lim\limits_{x \to 0}{\frac{4(\cos x - 1)}{x^2}} = \\ & = \lim\limits_{x \to 0}{-\frac{4 x^2}{2 x^2}} = -2 \end{array} $$

Бесконечно большие функции

Функцию %%f(x)%% называют бесконечно большой (б.б.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента функция имеет бесконечный предел.

Подобно б.м. функциям понятие б.б. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.б. функции при %%x \to a + 0%% и %%x \to a - 0%%. Термин “бесконечно большая” говорит не об абсолютном значении функции, а о характере его изменения в окрестности рассматриваемой точки. Никакое постоянное число, как бы велико оно ни было по абсолютному значению, не является бесконечно большим.

Примеры

  1. Функция %%f(x) = 1/x%% — б.б. при %%x \to 0%%.
  2. Функция %%f(x) = x%% — б.б. при %%x \to \infty%%.

Если выполнены условия определений $$ \begin{array}{l} \lim\limits_{x \to a}{f(x)} = +\infty, \\ \lim\limits_{x \to a}{f(x)} = -\infty, \end{array} $$

то говорят о положительной или отрицательной б.б. при %%a%% функции.

Пример

Функция %%1/{x^2}%% — положительная б.б. при %%x \to 0%%.

Связь между б.б. и б.м. функциями

Если %%f(x)%% — б.б. при %%x \to a%% функция, то %%1/f(x)%% — б.м.

при %%x \to a%%. Если %%\alpha(x)%% — б.м. при %%x \to a%% функция, отличная от нуля в некоторой проколотой окрестности точки %%a%%, то %%1/\alpha(x)%% — б.б. при %%x \to a%%.

Свойства бесконечно больших функций

Приведем несколько свойств б.б. функций. Эти свойства непосредственно следуют из определения б.б. функции и свойств функций, имеющих конечные пределы, а также из теоремы о связи между б.б. и б.м. функциями.

  1. Произведение конечного числа б.б. функций при %%x \to a%% есть б.б. функция при %%x \to a%%. Действительно, если %%f_k(x), k = \overline{1, n}%% — б.б. функции при %%x \to a%%, то в некоторой проколотой окрестности точки %%a%% %%f_k(x) \ne 0%%, и по теореме о связи б.б. и б.м. функций %%1/f_k(x)%% — б.м. функция при %%x \to a%%. Получается %%\displaystyle\prod^{n}_{k = 1} 1/f_k(x)%% — б.м функция при %%x \to a%%, а %%\displaystyle\prod^{n}_{k = 1}f_k(x)%% — б.б. функция при %%x \to a%%.
  2. Произведение б.б. функции при %%x \to a%% и функции, которая в некоторой проколотой окрестности точки %%a%% по абсолютному значению больше положительной постоянной, есть б.б. функция при %%x \to a%%. В частности, произведение б.б. функции при %%x \to a%% и функции, имеющей в точке %%a%% конечный ненулевой предел, будет б.б. функцией при %%x \to a%%.
  3. Сумма ограниченной в некоторой проколотой окрестности точки %%a%% функции и б.б. функции при %%x \to a%% есть б.б. функция при %%x \to a%%.

    Например, функции %%x - \sin x%% и %%x + \cos x%% — б.б. при %%x \to \infty%%.

  4. Сумма двух б.б. функций при %%x \to a%% есть неопределенность. В зависимости от знака слагаемых характер изменения такой суммы может быть самым различным.

    Пример

    Пусть даны функции %%f(x)= x, g(x) = 2x, h(x) = -x, v(x) = x + \sin x%% — б.б. функции при %%x \to \infty%%. Тогда:

    • %%f(x) + g(x) = 3x%% — б.б. функция при %%x \to \infty%%;
    • %%f(x) + h(x) = 0%% — б.м. функция при %%x \to \infty%%;
    • %%h(x) + v(x) = \sin x%% не имет предела при %%x \to \infty%%.

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели