4 принцип суперпозиции электрических полей. Принцип суперпозиции электрических полей

4 принцип суперпозиции электрических полей. Принцип суперпозиции электрических полей

27.08.2023

Материал из Википедии - свободной энциклопедии

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики . В самой простой формулировке принцип суперпозиции гласит:

  • Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
  • Любое сложное движение можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике , в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

  • Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
  • Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .
  • Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

В некоторых случаях эти нелинейности невелики, и принцип суперпозиции с некоторой степенью приближения может выполняться. В других случаях нарушение принципа суперпозиции велико и может приводить к принципиально новым явлениям. Так, например, два луча света, распространяющиеся в нелинейной среде, могут изменять траекторию друг друга. Более того, даже один луч света в нелинейной среде может воздействовать сам на себя и изменять свои характеристики. Многочисленные эффекты такого типа изучает нелинейная оптика .

Отсутствие принципа суперпозиции в нелинейных теориях

Тот факт, что уравнения классической электродинамики линейны, является скорее исключением, чем правилом. Многие фундаментальные теории современной физики являются нелинейными. Например, квантовая хромодинамика - фундаментальная теория сильных взаимодействий - является разновидностью теории Янга - Миллса , которая нелинейна по построению. Это приводит к сильнейшему нарушению принципа суперпозиции даже в классических (неквантованных) решениях уравнений Янга - Миллса.

Другим известным примером нелинейной теории является общая теория относительности . В ней также не выполняется принцип суперпозиции. Например, Солнце притягивает не только Землю и Луну, но также и само взаимодействие между Землёй и Луной. Впрочем, в слабых гравитационных полях эффекты нелинейности слабы, и для повседневных задач приближённый принцип суперпозиции выполняется с высокой точностью.

Наконец, принцип суперпозиции не выполняется, когда речь идёт о взаимодействии атомов и молекул . Это можно пояснить следующим образом. Рассмотрим два атома, связанных общим электронным облаком . Поднесем теперь точно такой же третий атом. Он как бы оттянет на себя часть связывающего атомы электронного облака, и в результате связь между первоначальными атомами ослабнет. То есть, присутствие третьего атома изменяет энергию взаимодействия пары атомов. Причина этого проста: третий атом взаимодействует не только с первыми двумя, но и с той «субстанцией», которая обеспечивает связь первых двух атомов.

Нарушение принципа суперпозиции во взаимодействиях атомов в немалой степени приводит к тому удивительному разнообразию физических и химических свойств веществ и материалов, которое так трудно предсказать из общих принципов молекулярной динамики.

Напишите отзыв о статье "Принцип суперпозиции"

Отрывок, характеризующий Принцип суперпозиции

Толпа, окружавшая икону, вдруг раскрылась и надавила Пьера. Кто то, вероятно, очень важное лицо, судя по поспешности, с которой перед ним сторонились, подходил к иконе.
Это был Кутузов, объезжавший позицию. Он, возвращаясь к Татариновой, подошел к молебну. Пьер тотчас же узнал Кутузова по его особенной, отличавшейся от всех фигуре.
В длинном сюртуке на огромном толщиной теле, с сутуловатой спиной, с открытой белой головой и с вытекшим, белым глазом на оплывшем лице, Кутузов вошел своей ныряющей, раскачивающейся походкой в круг и остановился позади священника. Он перекрестился привычным жестом, достал рукой до земли и, тяжело вздохнув, опустил свою седую голову. За Кутузовым был Бенигсен и свита. Несмотря на присутствие главнокомандующего, обратившего на себя внимание всех высших чинов, ополченцы и солдаты, не глядя на него, продолжали молиться.
Когда кончился молебен, Кутузов подошел к иконе, тяжело опустился на колена, кланяясь в землю, и долго пытался и не мог встать от тяжести и слабости. Седая голова его подергивалась от усилий. Наконец он встал и с детски наивным вытягиванием губ приложился к иконе и опять поклонился, дотронувшись рукой до земли. Генералитет последовал его примеру; потом офицеры, и за ними, давя друг друга, топчась, пыхтя и толкаясь, с взволнованными лицами, полезли солдаты и ополченцы.

Покачиваясь от давки, охватившей его, Пьер оглядывался вокруг себя.
– Граф, Петр Кирилыч! Вы как здесь? – сказал чей то голос. Пьер оглянулся.
Борис Друбецкой, обчищая рукой коленки, которые он запачкал (вероятно, тоже прикладываясь к иконе), улыбаясь подходил к Пьеру. Борис был одет элегантно, с оттенком походной воинственности. На нем был длинный сюртук и плеть через плечо, так же, как у Кутузова.
Кутузов между тем подошел к деревне и сел в тени ближайшего дома на лавку, которую бегом принес один казак, а другой поспешно покрыл ковриком. Огромная блестящая свита окружила главнокомандующего.
Икона тронулась дальше, сопутствуемая толпой. Пьер шагах в тридцати от Кутузова остановился, разговаривая с Борисом.
Пьер объяснил свое намерение участвовать в сражении и осмотреть позицию.
– Вот как сделайте, – сказал Борис. – Je vous ferai les honneurs du camp. [Я вас буду угощать лагерем.] Лучше всего вы увидите все оттуда, где будет граф Бенигсен. Я ведь при нем состою. Я ему доложу. А если хотите объехать позицию, то поедемте с нами: мы сейчас едем на левый фланг. А потом вернемся, и милости прошу у меня ночевать, и партию составим. Вы ведь знакомы с Дмитрием Сергеичем? Он вот тут стоит, – он указал третий дом в Горках.
– Но мне бы хотелось видеть правый фланг; говорят, он очень силен, – сказал Пьер. – Я бы хотел проехать от Москвы реки и всю позицию.
– Ну, это после можете, а главный – левый фланг…
– Да, да. А где полк князя Болконского, не можете вы указать мне? – спросил Пьер.
– Андрея Николаевича? мы мимо проедем, я вас проведу к нему.
– Что ж левый фланг? – спросил Пьер.
– По правде вам сказать, entre nous, [между нами,] левый фланг наш бог знает в каком положении, – сказал Борис, доверчиво понижая голос, – граф Бенигсен совсем не то предполагал. Он предполагал укрепить вон тот курган, совсем не так… но, – Борис пожал плечами. – Светлейший не захотел, или ему наговорили. Ведь… – И Борис не договорил, потому что в это время к Пьеру подошел Кайсаров, адъютант Кутузова. – А! Паисий Сергеич, – сказал Борис, с свободной улыбкой обращаясь к Кайсарову, – А я вот стараюсь объяснить графу позицию. Удивительно, как мог светлейший так верно угадать замыслы французов!
– Вы про левый фланг? – сказал Кайсаров.
– Да, да, именно. Левый фланг наш теперь очень, очень силен.
Несмотря на то, что Кутузов выгонял всех лишних из штаба, Борис после перемен, произведенных Кутузовым, сумел удержаться при главной квартире. Борис пристроился к графу Бенигсену. Граф Бенигсен, как и все люди, при которых находился Борис, считал молодого князя Друбецкого неоцененным человеком.
В начальствовании армией были две резкие, определенные партии: партия Кутузова и партия Бенигсена, начальника штаба. Борис находился при этой последней партии, и никто так, как он, не умел, воздавая раболепное уважение Кутузову, давать чувствовать, что старик плох и что все дело ведется Бенигсеном. Теперь наступила решительная минута сражения, которая должна была или уничтожить Кутузова и передать власть Бенигсену, или, ежели бы даже Кутузов выиграл сражение, дать почувствовать, что все сделано Бенигсеном. Во всяком случае, за завтрашний день должны были быть розданы большие награды и выдвинуты вперед новые люди. И вследствие этого Борис находился в раздраженном оживлении весь этот день.
За Кайсаровым к Пьеру еще подошли другие из его знакомых, и он не успевал отвечать на расспросы о Москве, которыми они засыпали его, и не успевал выслушивать рассказов, которые ему делали. На всех лицах выражались оживление и тревога. Но Пьеру казалось, что причина возбуждения, выражавшегося на некоторых из этих лиц, лежала больше в вопросах личного успеха, и у него не выходило из головы то другое выражение возбуждения, которое он видел на других лицах и которое говорило о вопросах не личных, а общих, вопросах жизни и смерти. Кутузов заметил фигуру Пьера и группу, собравшуюся около него.
– Позовите его ко мне, – сказал Кутузов. Адъютант передал желание светлейшего, и Пьер направился к скамейке. Но еще прежде него к Кутузову подошел рядовой ополченец. Это был Долохов.
– Этот как тут? – спросил Пьер.

Электростатика

Электростатика - раздел учения об электричестве, изучающий взаимодействие неподвижных электрических зарядов и свойства постоянного электрического поля.

1.Электрический заряд.

Электрический заряд - это внутреннее свойство тел или частиц, характеризующее их способность к электромагнитным взаимодействиям.

Единица электрического заряда - кулон (Кл) - электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 ампер за время 1 секунда.

Существует элементарный (минимальный) электрический заряд

Носитель элементарного отрицательного заряда - электрон . Его масса кг. Носитель элементарного положительного заряда - протон. Его масса кг.

Фундаментальные свойства электрического заряда установленные опытным путем:

Существует в двух видах: положительный и отрицательный . Одноименные заряды отталкиваются, разноименные - притягиваются.

Электрический заряд инвариантен - его величина не зависит от системы отсчета, т.е. от того, движется он или покоится.

Электрический заряд дискретен - заряд любого тела составляет целое кратное от элементарного электрического заряда е.

Электрический заряд аддитивен - заряд любой системы тел (частиц) равен сумме зарядов тел (частиц), входящих в систему.

Электрический заряд подчиняется закону сохранения заряда :
Алгебраическая сумма электрических зарядов любой замкнутой
системы остается неизменной, какие бы процессы ни происходили
внутри данной системы.

Под замкнутой системой в данном случае понимают систему, которая не обменивается зарядами с внешними телами.

В электростатике используется физическая модель - точечный электрический заряд - заряженное тело, форма и размеры которого несущественны в данной задаче.

2.Закон Кулона

Закон взаимодействия точечных зарядов - закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам и обратно пропорциональна квадрату расстояния r между ними:

Сила направлена по прямой, соединяющей взаимодействующие заряды, т.е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F > 0) в случае одноименных зарядов. В векторной форме, сила, действующая на заряд со стороны :

На заряд q 2 со стороны заряда действует сила

- электрическая постоянная , относящаяся к числу фундаментальных физических постоянных:

или . Тогда

где фарад (Ф) - единица электрической емкости (п.21).

Если взаимодействующие заряды находятся в изотропной среде, то кулоновская сила

где - диэлектрическая проницаемость среды - безразмерная величина, показывающая во сколько раз сила взаимодействия F между зарядами в данной среде меньше их силы взаимодействия в вакууме:

Диэлектрическая проницаемость вакуума . Подробнее диэлектрики и их свойства будут рассмотрены ниже (п.15).

Всякое заряженное тело можно рассматривать как совокупность точечных зарядов , аналогично тому, как в механике всякое тело можно считать совокупностью материальных точек. Поэтому электростатическая сила , с которой одно заряженное тело действует на другое, равна геометрической сумме сил , приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.

Часто бывает значительно удобнее считать, что заряды распределены в заряженном теле непрерывно - вдоль некоторой линии (например, в случае заряженного тонкого стержня), поверхности (например, в случае заряженной пластины) или объема . Соответственно пользуются понятиями линейной, поверхностной и объемной плотностей зарядов.

Объемная плотность электрических зарядов

где dq - заряд малого элемента заряженного тела объемом dV.

Поверхностная плотность электрических зарядов

где dq - заряд малого участка заряженной поверхности площадью dS.

Линейная плотность электрических зарядов

где dq - заряд малого участка заряженной линии длиной dl.

3.

Электростатическим полем называется поле, создаваемое неподвижными электрическими зарядами.

Электростатическое поле описывается двумя величинами: потенциалом (энергетическая скалярная характеристика поля) и напряженностью (силовая векторная характеристика поля).

Напряженность электростатического поля - векторная физическая величина, определяемая силой, действующей на единичный положительный заряд помещенный в данную точку поля:

Единица напряженности электростатического поля - ньютон на кулон (Н/Кл):

1 Н/Кп=1 В/м, где В (вольт) - единица потенциала электростатического поля.

Напряженность поля точечного заряда в вакууме (и в диэлектрике)

где - радиус-вектор, соединяющий данную точку поля с зарядом q .

В скалярной форме:

Направление вектора совпадает с направлением сипы , действующей на положительный заряд.

Если поле создается положительным зарядом, то вектор направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положительного заряда). Если поле создается отрицательным зарядом, то вектор направлен к заряду (притяжение).

Графически электростатическое поле изображают с помощью линий напряженности - линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис.{а)). Линиям напряженности приписывается направление, совпа­дающее с направлением вектора напряженности . Так как в данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются . Для однородного поля (когда вектор напря­женности в любой точке постоянен по модулю и направлению) линии напряженности параллельны вектору напряженности. Если поле создается точечным зарядом, то линии напряженности -радиальные прямые, выходящие из заряда, если он положителен , и входящие в него, если заряд отрицателен (рис.(б)).

4. Поток вектора .

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, их проводят с определенной густотой : число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора .

Тогда число линий напряженности, пронизывающих элементарную площадку dS , равно где - проекция вектора на нормаль к площадке dS . (Вектор - единичный вектор, перпендикулярный площадке dS ). Величина

называется потоком вектора напряженности через площадку dS. Здесь dS = dS - вектор, модуль которо­го равен dS , а направление вектора совпадает с направлением к площадке.

Поток вектора сквозь произвольную замкнутую поверхность S :

Принцип суперпозиции электростатических полей.

К кулоновским силам применим рассмотренный в механике принцип независимости действия сил - результирующая сила, действующая со стороны поля на пробный заряд равна векторной сумме сип, приложенных к нему со стороны каждого из зарядов, создающих электростатическое поле.

Напряженность результирующего поля, создаваемого системой зарядов, также равна геометрической сумме напряженно с тей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Эта формула выражает принцип суперпозиции (наложения) электростатических полей . Он позволяет рассчитать электростатические поля любой системы неподвижных зарядов, представив ее в виде совокупности точечных зарядов.

Напомним правило определения величины вектора суммы двух векторов и :

6. Теорема Гаусса.

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя теорему Гаусса, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

Рассмотрим поток вектора напряженности через сферическую поверхность радиуса г, охватывающую точечный заряд q , находящийся в ее центре

Этот результат справедлив для любой замкнутой поверхности произвольной формы, охватывающей заряд.

Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Рассмотрим общий случай произвольной поверхности, окружающей п зарядов. Согласно принципу суперпозиции напряженность поля , создаваемого всеми зарядами, равна сумме напряженностей , создаваемых каждым зарядом в отдельности. Поэтому

Теорема Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на .

Если заряд распределен в пространстве с объемной плотностью , то теорема Гаусса:

7. Циркуляция вектора напряженности.

Если в электростатическом поле точечного заряда q из точки 1 в точку 2 вдоль произвольной траектории перемещается другой точечный заряд ,то сила, приложенная к заряду, совершает работу. Работа силы на элементарном перемещении dl равна:

Работа при перемещении заряда из точки 1 в точку 2:

Работа не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек . Следовательно, электростатическое поле точечного заряда является потенциальным , а электростатические силы - консервативными .

Таким образом, работа перемещения заряда в электростатическом по любому замкнутому контуру L равна нулю:

Если переносимый заряд единичный , то элемен­тарная работа сил поля на пути равна , где -проекция вектора на направление элементарного перемещения .

Интеграл называется циркуляцией вектора напряженности по заданному замкнутому контуру L.

Теорема о циркуляции вектора :

Циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю

Силовое поле, обладающее таким свойством. называется потенциальным. Эта формула справедлива только для электрического поля неподвижных зарядов (электростатического).

8. Потенциальная энергия заряда.

В потенциальном поле тела обладают потенциальной энергией и работа консервативных сил совершается за счет убыли потенциальной энергии.

Поэтому работу можно представить, как разность потенциальных энергий заряда q 0 в начальной и конечной точках поля заряда q :

Потенциальная энергия заряда , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0.

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения) отрицательна .

Если поле создается системой п точечных зарядов, то потенциальная энергия заряда д 0 , находящегося в этом поле, равна сумме его потенциальных энергий, создаваемых каждым из зарядов в отдельности:

9. Потенциал электростатического поля.

Отношение не зависит от пробного заряда и является, энергетической характеристикой поля, называемой потенциалом :

Потенциал в какой-либо точке электростатического поля есть скалярная физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Например, потенциал поля, создаваемого точечным зарядом q , равен

10.Разность потенциалов

Работа, совершаемая силами электростатического поля при перемещении заряда из точки 1 в точку 2, может быть представлена как

то есть равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках.

Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного положительного заряда из точки 1 в точку 2

Пользуясь определением напряженности электростатического поля, можем записать работу в виде

где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.

Если перемещать заряд из произвольной точки за пределы поля {на бесконечность), где потенциальная энергия, а значит и потенциал, равны нулю, то работа сип электростатического поля , откуда

Таким образом, еще одно определение потенциала : потенциал - физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки в бесконечность.

Единица потенциала - вольт (В): 1В есть потенциал такой точки поля, в которой заряд в 1Кл обладает потенциальной энергией 1Дж (1В=1ДжЛКл).

Принцип суперпозиции потенциалов электростатических полей : Если поле создается несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов.

11. Связь между напряженностью и потенциалом.

Для потенциального поля, между потенциальной (консервативной) силой и потенциальной энергией существует связь:

где ("набла") - оператор Гамильтона :

Поскольку и , то

Знак минус показывает, что вектор направлен в сторону убывания потенциала.

12. Эквипотенциальные поверхности.

Для графического изображения распределения потенциала используются эквипотенциальные поверхности – поверхности во всех точках которых потенциал имеет одно и тоже значение.

Эквипотенциальные поверхности обычно проводят так, чтобы разности потенциалов между двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше. На рисунке пунктиром изображены силовые линии, сплошными линиями - сечения эквипотенциальных поверхностей для: положительного точечного заряда (а), диполя (б), двух одноименных зарядов (в), заряженного металлического проводника сложной конфигурации (г).

Для точечного заряда потенциал , поэтому эквипотенциальные поверхности - концентрические сферы. С другой стороны, линии напряженности - радиальные прямые. Следовательно, линии напряженности перпендикулярны эквипотенциальным поверхностям.

Можно показать, что во всех случаях

1) вектор перпендикулярен эквипотенциальным поверхностям и

2) всегда направлен в сторону убывания потенциала.

13.Примеры расчета наиболее важных симметричных электростатических полей в вакууме.

1. Электростатическое поле электрического диполя в вакууме.

Электрическим диполем (или двойным электрическим полюсом) называется система двух равных по модулю разноименных точечных зарядов (+q,-q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля (l<.

Плечо диполя - вектор, направленный по оси диполя от отрицательного заряда к положительному и равный расстоянию между ними.

Электрический момент диполя р е - вектор, совпада­ющий по направлению с плечом диполя и равный произведению модуля заряда на плечо :

Пусть r - расстояние до точки А от середины оси диполя. Тогда, учитывая что r>>l.

2) Напряженность поля в точке В на перпендикуляре, восстановленном к оси диполя из его середины при r’>>l.

Поэтому

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона ) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) - французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и - радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического - «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы - соответствующее знаку произведения зарядов: - отталкивание и - притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом - противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора - расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает...

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d . Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер ) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной . Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон - слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел - первого и второго - действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV - физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS - физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где - физически бесконечно малый элемент длины линии.

Здесь всюду - заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r , r + a /2, r + a ? Поскольку по условиям задачи мы не имеем права считать, что a << r , применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать - необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем , на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q , расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q :

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а ?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где - безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина - размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Тела, имеющие определенный объем и линейные размеры, всегда занимают часть пространства, в котором не могут нахо-диться другие тела без изменения тех или иных характеристик. Там, где находится ка-мень, не может находиться ни другой ка-мень, ни металлический шар, ни любой другой вещественный объект.

Характерной особенностью электричес-кого поля является то, что, в отличие от ве-щества, в одной точке пространства могут находиться одновременно поля различных источников и различного происхождения. При этом каждое поле сохраняет свою ин-дивидуальность и ни одна из его характе-ристик не изменяется под влиянием другого поля. Одним из подтверждений этого явля-ется известный всем пример распростране-ния радиоволн, которые являются перемен-ным электромагнитным полем. Радиоволна, распространяющаяся с севера на юг, со-всем не влияет на волну, которая распро-страняется с запада на восток. И слушатель, принимая информацию, которую принесла первая волна, даже не догадывается, что эта волна «встретилась» с другой.

Подобное наблюдается и в том случае, когда есть определенная система заряжен-ных тел и соответствующих им полей.

Пусть в некоторой точке пространства A находится тело, имеющее положительный заряд Q 1 (рис. 4.33). Если в произвольную точку B внесем точечное тело с положи-тельным зарядом q 0 , то на него будет действовать сила F̅ 1 как результат взаимодей-ствия тела B с полем тела A.

В произвольную точку C внесем тело с зарядом Q 2 (рис. 4.34). Его поле будет действовать на тело B с силой F̅ 2 . Никаких изменений в значении силы F̅ 1 не произойдет. Но из механики известно, что, если на тело действует несколько сил, то их можно за-менить равнодействующей (рис. 4.35).

В случае нескольких источников элект-рического поля

F̅ = F̅ 1 + 2 + … + n .

Если левую и правую части уравнения разделить на q 0 , то получим

F̅ / q 0 = 1 / q 0 + 2 / q 0 + … + n / q 0 ,

= E̅ 1 + E̅ 2 + … + E̅ n .

Следовательно, при расчетах взаимодей-ствия заряженного тела с электрическими полями разных источников можно поль-зоваться понятием напряженности «суммар-ного» электрического поля. Этот вывод фор-мулируется как принцип суперпозиции по-лей . Материал с сайта

Принцип суперпозиции по-лей. Напряженность электрического поля си-стемы заряженных тел в любой точке рав-няется векторной сумме напряженностей по-лей отдельных тел в этой точке.

В математической форме этот принцип записывается так:

= E̅ 1 + E̅ 2 + … + n ,

где E̅ — напряженность поля системы заряженных тел; E̅ 1 , E̅ 2 … —напряженности по-лей каждого из тел, которые входят в си-стему.

Напряженность электрического поля тела, имеющего одинако-вое количество положительно и отрицательно заряженных ча-стиц, равняется нулю.

Принцип суперпозиции по-лей не огра-ничен количеством тел в системе. Именно поэтому напряженность электрического по-ля незаряженного тела, в состав которого входит огромное количество частиц с по-ложительными и отрицательными заряда-ми, практически равна нулю.

На этой странице материал по темам:

  • Как формулируется принцип суперпозиции полей

  • Принцип суперпозиции сил формула

  • Принцип суперпозиции электрических полей кратко

  • Принцип суперпозиции формула

  • Какое выражение является математической записью принципа суперпозиции полей?

Вопросы по этому материалу:

© 2024 steadicams.ru - Кирпич. Дизайн и декор. Фасад. Облицовка. Фасадные панели